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Learn all about QL, the powerful query language that underlies the code scanning
tool CodeQL.
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CHAPTER

ONE

ABOUT THE QL LANGUAGE

QL is the powerful query language that underlies CodeQL, which is used to ana-
lyze code.

1.1 About query languages and databases
This section is aimed at users with a background in general purpose programming
as well as in databases. For a basic introduction and information on how to get
started, see Learning CodeQL.

QL is a declarative, object-oriented query language that is optimized to enable
efficient analysis of hierarchical data structures, in particular, databases repre-
senting software artifacts.

A database is an organized collection of data. The most commonly used database
model is a relational model which stores data in tables and SQL (Structured Query
Language) is the most commonly used query language for relational databases.

The purpose of a query language is to provide a programming platform where
you can ask questions about information stored in a database. A database man-
agement system manages the storage and administration of data and provides
the querying mechanism. A query typically refers to the relevant database enti-
ties and specifies various conditions (called predicates) that must be satisfied by
the results. Query evaluation involves checking these predicates and generating
the results. Some of the desirable properties of a good query language and its
implementation include:

3
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• Declarative specifications - a declarative specification describes properties
that the result must satisfy, rather than providing the procedure to compute
the result. In the context of database query languages, declarative specifi-
cations abstract away the details of the underlying database management
system and query processing techniques. This greatly simplifies query writ-
ing.

• Expressiveness - a powerful query language allows you to write complex
queries. This makes the language widely applicable.

• Efficient execution - queries can be complex and databases can be very large,
so it is crucial for a query language implementation to process and execute
queries efficiently.

1.2 Properties of QL
The syntax of QL is similar to SQL, but the semantics of QL are based on Datalog,
a declarative logic programming language often used as a query language. This
makes QL primarily a logic language, and all operations in QL are logical op-
erations. Furthermore, QL inherits recursive predicates from Datalog, and adds
support for aggregates, making even complex queries concise and simple. For
example, consider a database containing parent-child relationships for people. If
we want to find the number of descendants of a person, typically we would:

1. Find a descendant of the given person, that is, a child or a descendant of a
child.

2. Count the number of descendants found using the previous step.

When you write this process in QL, it closely resembles the above structure. No-
tice that we used recursion to find all descendants of the given person, and an
aggregate to count the number of descendants. Translating these steps into the fi-
nal query without adding any procedural details is possible due to the declarative
nature of the language. The QL code would look something like this:

Person getADescendant(Person p) {
result = p.getAChild() or

(continues on next page)
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(continued from previous page)

result = getADescendant(p.getAChild())
}

int getNumberOfDescendants(Person p) {
result = count(getADescendant(p))

}

For more information about the important concepts and syntactic constructs of
QL, see the individual reference topics such as Expressions and Recursion. The
explanations and examples help you understand how the language works, and
how to write more advanced QL code.

For formal specifications of the QL language and QLDoc comments, see the QL
language specification and QLDoc comment specification.

1.3 QL and object orientation
Object orientation is an important feature of QL. The benefits of object orienta-
tion are well known – it increases modularity, enables information hiding, and
allows code reuse. QL offers all these benefits without compromising on its logi-
cal foundation. This is achieved by defining a simple object model where classes
are modeled as predicates and inheritance as implication. The libraries made
available for all supported languages make extensive use of classes and inheri-
tance.

1.4 QL and general purpose programming lan-
guages

Here are a few prominent conceptual and functional differences between general
purpose programming languages and QL:

• QL does not have any imperative features such as assignments to variables
or file system operations.

1.3. QL and object orientation 5
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• QL operates on sets of tuples and a query can be viewed as a complex se-
quence of set operations that defines the result of the query.

• QLs set-based semantics makes it very natural to process collections of values
without having to worry about efficiently storing, indexing and traversing
them.

• In object oriented programming languages, instantiating a class involves cre-
ating an object by allocating physical memory to hold the state of that in-
stance of the class. In QL, classes are just logical properties describing sets
of already existing values.

1.5 Further reading
Academic references also provide an overview of QL and its semantics. Other
useful references on database query languages and Datalog:

• Database theory: Query languages

• Logic Programming and Databases book - Amazon page

• Foundations of Databases

• Datalog

6 Chapter 1. About the QL language
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CHAPTER

TWO

PREDICATES

Predicates are used to describe the logical relations that make up a QL program.

Strictly speaking, a predicate evaluates to a set of tuples. For example, consider
the following two predicate definitions:

predicate isCountry(string country) {
country = "Germany"
or
country = "Belgium"
or
country = "France"

}

predicate hasCapital(string country, string capital) {
country = "Belgium" and capital = "Brussels"
or
country = "Germany" and capital = "Berlin"
or
country = "France" and capital = "Paris"

}

The predicate isCountry is the set of one-tuples {("Belgium"),("Germany"),
("France")}, while hasCapital is the set of two-tuples {("Belgium",
"Brussels"),("Germany","Berlin"),("France","Paris")}. The arity of
these predicates is one and two, respectively.

In general, all tuples in a predicate have the same number of elements. The

7
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arity of a predicate is that number of elements, not including a possible result
variable (see Predicates with result).

There are a number of built-in predicates in QL. You can use these in any queries
without needing to import any additional modules. In addition to these built-in
predicates, you can also define your own:

2.1 Defining a predicate
When defining a predicate, you should specify:

1. The keyword predicate (for a predicate without result), or the type of the
result (for a predicate with result).

2. The name of the predicate. This is an identifier starting with a lowercase
letter.

3. The arguments to the predicate, if any, separated by commas. For each argu-
ment, specify the argument type and an identifier for the argument variable.

4. The predicate body itself. This is a logical formula enclosed in braces.

Note: An abstract or external predicate has no body. To define such a predicate,
end the predicate definition with a semicolon (;) instead.

2.1.1 Predicates without result
These predicate definitions start with the keyword predicate. If a value satisfies
the logical property in the body, then the predicate holds for that value.

For example:

predicate isSmall(int i) {
i in [1 .. 9]

}

If i is an integer, then isSmall(i) holds if i is a positive integer less than 10.

8 Chapter 2. Predicates
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2.1.2 Predicates with result
You can define a predicate with result by replacing the keyword predicate with
the type of the result. This introduces the special variable result.

For example:

int getSuccessor(int i) {
result = i + 1 and
i in [1 .. 9]

}

If i is a positive integer less than 10, then the result of the predicate is the suc-
cessor of i.

Note that you can use result in the same way as any other argument to the
predicate. You can express the relation between result and other variables in
any way you like. For example, given a predicate getAParentOf(Person x) that
returns parents of x, you can define a reverse predicate as follows:

Person getAChildOf(Person p) {
p = getAParentOf(result)

}

It is also possible for a predicate to have multiple results (or none at all) for each
value of its arguments. For example:

string getANeighbor(string country) {
country = "France" and result = "Belgium"
or
country = "France" and result = "Germany"
or
country = "Germany" and result = "Austria"
or
country = "Germany" and result = "Belgium"

}

In this case:

2.1. Defining a predicate 9
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• The predicate call getANeighbor("Germany") returns two results:
"Austria" and "Belgium".

• The predicate call getANeighbor("Belgium") returns no results, since
getANeighbor does not define a result for "Belgium".

2.2 Recursive predicates
A predicate in QL can be recursive. This means that it depends, directly or indi-
rectly, on itself.

For example, you could use recursion to refine the above example. As it stands,
the relation defined in getANeighbor is not symmetricit does not capture the fact
that if x is a neighbor of y, then y is a neighbor of x. A simple way to capture this
is to call this predicate recursively, as shown below:

string getANeighbor(string country) {
country = "France" and result = "Belgium"
or
country = "France" and result = "Germany"
or
country = "Germany" and result = "Austria"
or
country = "Germany" and result = "Belgium"
or
country = getANeighbor(result)

}

Now getANeighbor("Belgium") also returns results, namely "France" and
"Germany".

For a more general discussion of recursive predicates and queries, see Recursion.

2.3 Kinds of predicates
There are three kinds of predicates, namely non-member predicates, member
predicates, and characteristic predicates.

10 Chapter 2. Predicates
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Non-member predicates are defined outside a class, that is, they are not members
of any class.

For more information about the other kinds of predicates, see characteristic pred-
icates and member predicates in the Classes topic.

Here is an example showing a predicate of each kind:

int getSuccessor(int i) { // 1. Non-member predicate
result = i + 1 and
i in [1 .. 9]

}

class FavoriteNumbers extends int {
FavoriteNumbers() { // 2. Characteristic predicate

this = 1 or
this = 4 or
this = 9

}

string getName() { // 3. Member predicate for the class␣
,→`FavoriteNumbers`

this = 1 and result = "one"
or
this = 4 and result = "four"
or
this = 9 and result = "nine"

}
}

You can also annotate each of these predicates. See the list of annotations avail-
able for each kind of predicate.

2.4 Binding behavior
It must be possible to evaluate a predicate in a finite amount of time, so the set
it describes is not usually allowed to be infinite. In other words, a predicate can
only contain a finite number of tuples.

2.4. Binding behavior 11
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The QL compiler reports an error when it can prove that a predicate contains
variables that arent constrained to a finite number of values. See Binding for
more information.

Here are a few examples of infinite predicates:

/*
Compilation errors:
ERROR: "i" is not bound to a value.
ERROR: "result" is not bound to a value.

*/
int multiplyBy4(int i) {

result = i * 4
}

/*
Compilation error:
ERROR: "str" is not bound to a value.

*/
predicate shortString(string str) {

str.length() < 10
}

In multiplyBy4, the argument i is declared as an int, which is an infinite type.
It is used in the binary operation *, which does not bind its operands. result
is unbound to begin with, and remains unbound since it is used in an equality
check with i * 4, which is also unbound.

In shortString, str remains unbound since it is declared with the infinite type
string, and the built-in function length() does not bind it.

2.4.1 Binding sets
Sometimes you may want to define an infinite predicate anyway, because you only
intend to use it on a restricted set of arguments. In that case, you can specify an
explicit binding set using the bindingset annotation. This annotation is valid
for any kind of predicate.
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For example:

bindingset[i]
int multiplyBy4(int i) {

result = i * 4
}

from int i
where i in [1 .. 10]
select multiplyBy4(i)

Although multiplyBy4 is an infinite predicate, the above QL query is legal. It
first uses the bindingset annotation to state that the predicate multiplyBy4
will be finite provided that i is bound to a finite number of values. Then it uses
the predicate in a context where i is restricted to to the range [1 .. 10].

It is also possible to state multiple binding sets for a predicate. This can be done
by adding multiple binding set annotations, for example:

bindingset[x] bindingset[y]
predicate plusOne(int x, int y) {

x + 1 = y
}

from int x, int y
where y = 42 and plusOne(x, y)
select x, y

Multiple binding sets specified this way are independent of each other. The above example means:

• If x is bound, then x and y are bound.

• If y is bound, then x and y are bound.

That is, bindingset[x] bindingset[y], which states that at least one of x or
y must be bound, is different from bindingset[x, y], which states that both x
and y must be bound.

2.4. Binding behavior 13
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The latter can be useful when you want to declare a predicate with result that
takes multiple input arguments. For example, the following predicate takes a
string str and truncates it to a maximum length of len characters:

bindingset[str, len]
string truncate(string str, int len) {

if str.length() > len
then result = str.prefix(len)
else result = str

}

You can then use this in a select clause, for example:

select truncate("hello world", 5)

2.5 Database predicates
Each database that you query contains tables expressing relations between values.
These tables (database predicates) are treated in the same way as other predicates
in QL.

For example, if a database contains a table for persons, you can write persons(x,
firstName, _, age) to constrain x, firstName, and age to be the first, second,
and fourth columns of rows in that table.

The only difference is that you cant define database predicates in QL. They are
defined by the underlying database. Therefore, the available database predicates
vary according to the database that you are querying.

14 Chapter 2. Predicates
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THREE

QUERIES

Queries are the output of a QL program. They evaluate to sets of results.

There are two kinds of queries. For a given query module, the queries in that module are:

• The select clause, if any, defined in that module.

• Any query predicates in that modules predicate namespace. That is, they
can be defined in the module itself, or imported from a different module.

We often also refer to the whole QL program as a query.

3.1 Select clauses
When writing a query module, you can include a select clause (usually at the
end of the file) of the following form:

from /* ... variable declarations ... */
where /* ... logical formula ... */
select /* ... expressions ... */

The from and where parts are optional.

Apart from the expressions described in Expressions, you can also include:

• The as keyword, followed by a name. This gives a label to a column of
results, and allows you to use them in subsequent select expressions.

15



QL language reference, Release 1.24

• The order by keywords, followed by the name of a result column, and
optionally the keyword asc or desc. This determines the order in which
to display the results.

For example:

from int x, int y
where x = 3 and y in [0 .. 2]
select x, y, x * y as product, "product: " + product

This select clause returns the following results:

x y product
3 0 0 product: 0
3 1 3 product: 3
3 2 6 product: 6

You could also add order by y desc at the end of the select clause. Now the
results are ordered according to the values in the y column, in descending order:

x y product
3 2 6 product: 6
3 1 3 product: 3
3 0 0 product: 0

3.2 Query predicates
A query predicate is a non-member predicate with a query annotation. It returns
all the tuples that the predicate evaluates to.

For example:

query int getProduct(int x, int y) {
x = 3 and
y in [0 .. 2] and

(continues on next page)
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(continued from previous page)

result = x * y
}

This predicate returns the following results:

x y result
3 0 0
3 1 3
3 2 6

A benefit of writing a query predicate instead of a select clause is that you can call
the predicate in other parts of the code too. For example, you can call getProduct
inside the body of a class:

class MultipleOfThree extends int {
MultipleOfThree() { this = getProduct(_, _) }

}

In contrast, the select clause is like an anonymous predicate, so you cant call it
later.

It can also be helpful to add a query annotation to a predicate while you debug
code. That way you can explicitly see the set of tuples that the predicate evaluates
to.

3.2. Query predicates 17
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FOUR

TYPES

QL is a statically typed language, so each variable must have a declared type.

A type is a set of values. For example, the type int is the set of integers. Note
that a value can belong to more than one of these sets, which means that it can
have more than one type.

The kinds of types in QL are primitive types, classes, character types, class domain
types, algebraic datatypes, type unions, and database types.

4.1 Primitive types
These types are built in to QL and are always available in the global namespace,
independent of the database that you are querying.

1. boolean: This type contains the values true and false.

2. float: This type contains 64-bit floating point numbers, such as 6.28 and
-0.618.

3. int: This type contains 32-bit twos complement integers, such as -1 and 42.

4. string: This type contains finite strings of 16-bit characters.

5. date: This type contains dates (and optionally times).

19
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QL has a range of built-in operations defined on primitive types. These are avail-
able by using dispatch on expressions of the appropriate type. For example, 1.
toString() is the string representation of the integer constant 1. For a full list of
built-in operations available in QL, see the section on built-ins in the QL language
specification.

4.2 Classes
You can define your own types in QL. One way to do this is to define a class.

Classes provide an easy way to reuse and structure code. For example, you can:

• Group together related values.

• Define member predicates on those values.

• Define subclasses that override member predicates.

A class in QL doesnt create a new object, it just represents a logical property. A
value is in a particular class if it satisfies that logical property.

4.2.1 Defining a class
To define a class, you write:

1. The keyword class.

2. The name of the class. This is an identifier starting with an uppercase letter.

3. The types to extend.

4. The body of the class, enclosed in braces.

For example:

class OneTwoThree extends int {
OneTwoThree() { // characteristic predicate

this = 1 or this = 2 or this = 3
}

(continues on next page)
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(continued from previous page)

string getAString() { // member predicate
result = "One, two or three: " + this.toString()

}

predicate isEven() { // member predicate
this = 2

}
}

This defines a class OneTwoThree, which contains the values 1, 2, and 3. The
characteristic predicate captures the logical property of being one of the integers
1, 2, or 3.

OneTwoThree extends int, that is, it is a subtype of int. A class in QL must
always extend at least one existing type. Those types are called the base types
of the class. The values of a class are contained within the intersection of the
base types (that is, they are in the class domain type). A class inherits all member
predicates from its base types.

A class can extend multiple types. See Multiple inheritance below.

To be valid, a class:

• Must not extend itself.

• Must not extend a final class.

• Must not extend types that are incompatible. (See Type compatibility.)

You can also annotate a class. See the list of annotations available for classes.

4.2.2 Class bodies
The body of a class can contain:

• A characteristic predicate declaration.

• Any number of member predicate declarations.
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• Any number of field declarations.

When you define a class, that class also inherits all non-private member predicates
and fields from its supertypes. You can override those predicates and fields to give
them a more specific definition.

Characteristic predicates

These are predicates defined inside the body of a class. They are logical properties
that use the variable this to restrict the possible values in the class.

Member predicates

These are predicates that only apply to members of a particular class. You can call
a member predicate on a value. For example, you can use the member predicate
from the above class:

1.(OneTwoThree).getAString()

This call returns the result "One, two or three: 1".

The expression (OneTwoThree) is a cast. It ensures that 1 has type OneTwoThree
instead of just int. Therefore, it has access to the member predicate
getAString().

Member predicates are especially useful because you can chain them together. For
example, you can use toUpperCase(), a built-in function defined for string:

1.(OneTwoThree).getAString().toUpperCase()

This call returns "ONE, TWO OR THREE: 1".

Note: Characteristic predicates and member predicates often use the variable
this. This variable always refers to a member of the classin this case a value
belonging to the class OneTwoThree. In the characteristic predicate, the variable
this constrains the values that are in the class. In a member predicate, this acts
in the same way as any other argument to the predicate.
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Fields

These are variables declared in the body of a class. A class can have any number
of field declarations (that is, variable declarations) within its body. You can use
these variables in predicate declarations inside the class. Much like the variable
this, fields must be constrained in the characteristic predicate.

For example:

class SmallInt extends int {
SmallInt() { this = [1 .. 10] }

}

class DivisibleInt extends SmallInt {
SmallInt divisor; // declaration of the field `divisor`
DivisibleInt() { this % divisor = 0 }

SmallInt getADivisor() { result = divisor }
}

from DivisibleInt i
select i, i.getADivisor()

In this example, the declaration SmallInt divisor introduces a field divisor,
constrains it in the characteristic predicate, and then uses it in the declaration of
the member predicate getADivisor. This is similar to introducing variables in a
select clause by declaring them in the from part.

You can also annotate predicates and fields. See the list of annotations that are
available.

4.2.3 Concrete classes
The classes in the above examples are all concrete classes. They are defined by
restricting the values in a larger type. The values in a concrete class are precisely
those values in the intersection of the base types that also satisfy the characteristic
predicate of the class.
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4.2.4 Abstract classes
A class annotated with abstract, known as an abstract class, is also a restriction
of the values in a larger type. However, an abstract class is defined as the union
of its subclasses. In particular, for a value to be in an abstract class, it must satisfy
the characteristic predicate of the class itself and the characteristic predicate of
a subclass.

An abstract class is useful if you want to group multiple existing classes together
under a common name. You can then define member predicates on all those
classes. You can also extend predefined abstract classes: for example, if you
import a library that contains an abstract class, you can add more subclasses to
it.

Example

If you are writing a security query, you may be interested in identifying all expres-
sions that can be interpreted as SQL queries. You can use the following abstract
class to describe these expressions:

abstract class SqlExpr extends Expr {
...

}

Now define various subclassesone for each kind of database management sys-
tem. For example, you can define a subclass class PostgresSqlExpr extends
SqlExpr, which contains expressions passed to some Postgres API that performs a
database query. You can define similar subclasses for MySQL and other database
management systems.

The abstract class SqlExpr refers to all of those different expressions. If you want
to add support for another database system later on, you can simply add a new
subclass to SqlExpr; there is no need to update the queries that rely on it.

Important

You must take care when you add a new subclass to an existing abstract
class. Adding a subclass is not an isolated change, it also extends the
abstract class since that is a union of its subclasses.
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4.2.5 Overriding member predicates
If a class inherits a member predicate from a supertype, you can override the
inherited definition. You do this by defining a member predicate with the same
name and arity as the inherited predicate, and by adding the override anno-
tation. This is useful if you want to refine the predicate to give a more specific
result for the values in the subclass.

For example, extending the class from the first example:

class OneTwo extends OneTwoThree {
OneTwo() {

this = 1 or this = 2
}

override string getAString() {
result = "One or two: " + this.toString()

}
}

The member predicate getAString() overrides the original definition of
getAString() from OneTwoThree.

Now, consider the following query:

from OneTwoThree o
select o, o.getAString()

The query uses the most specific definition(s) of the predicate getAString(), so
the results look like this:

o getAString() result
1 One or two: 1
2 One or two: 2
3 One, two or three: 3

In QL, unlike other object-oriented languages, different subtypes of the same
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types dont need to be disjoint. For example, you could define another subclass of
OneTwoThree, which overlaps with OneTwo:

class TwoThree extends OneTwoThree {
TwoThree() {

this = 2 or this = 3
}

override string getAString() {
result = "Two or three: " + this.toString()

}
}

Now the value 2 is included in both class types OneTwo and TwoThree. Both of
these classes override the original definition of getAString(). There are two
new most specific definitions, so running the above query gives the following
results:

o getAString() result
1 One or two: 1
2 One or two: 2
2 Two or three: 2
3 Two or three: 3

4.2.6 Multiple inheritance
A class can extend multiple types. In that case, it inherits from all those types.

For example, using the definitions from the above section:

class Two extends OneTwo, TwoThree {}

Any value in the class Twomust satisfy the logical property represented by OneTwo,
and the logical property represented by TwoThree. Here the class Two contains
one value, namely 2.

It inherits member predicates from OneTwo and TwoThree. It also (indirectly)
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inherits from OneTwoThree and int.

Note: If a subclass inherits multiple definitions for the same predicate name,
then it must override those definitions to avoid ambiguity. Super expressions are
often useful in this situation.

4.3 Character types and class domain types
You cant refer to these types directly, but each class in QL implicitly defines a
character type and a class domain type. (These are rather more subtle concepts
and dont appear very often in practical query writing.)

The character type of a QL class is the set of values satisfying the characteristic
predicate of the class. It is a subset of the domain type. For concrete classes, a
value belongs to the class if, and only if, it is in the character type. For abstract
classes, a value must also belong to at least one of the subclasses, in addition to
being in the character type.

The domain type of a QL class is the intersection of the character types of all
its supertypes, that is, a value belongs to the domain type if it belongs to every
supertype. It occurs as the type of this in the characteristic predicate of a class.

4.4 Algebraic datatypes

Note: The syntax for algebraic datatypes is considered experimental and is sub-
ject to change. However, they appear in the standard QL libraries so the following
sections should help you understand those examples.

An algebraic datatype is another form of user-defined type, declared with the
keyword newtype.

Algebraic datatypes are used for creating new values that are neither primitive
values nor entities from the database. One example is to model flow nodes when
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analyzing data flow through a program.

An algebraic datatype consists of a number of mutually disjoint branches, that
each define a branch type. The algebraic datatype itself is the union of all the
branch types. A branch can have arguments and a body. A new value of the
branch type is produced for each set of values that satisfy the argument types
and the body.

A benefit of this is that each branch can have a different structure. For example,
if you want to define an option type that either holds a value (such as a Call) or
is empty, you could write this as follows:

newtype OptionCall = SomeCall(Call c) or NoCall()

This means that for every Call in the program, a distinct SomeCall value is pro-
duced. It also means that a unique NoCall value is produced.

4.4.1 Defining an algebraic datatype
To define an algebraic datatype, use the following general syntax:

newtype <TypeName> = <branches>

The branch definitions have the following form:

<BranchName>(<arguments>) { <body> }

• The type name and the branch names must be identifiers starting with an
uppercase letter. Conventionally, they start with T.

• The different branches of an algebraic datatype are separated by or.

• The arguments to a branch, if any, are variable declarations separated by com-
mas.

• The body of a branch is a predicate body. You can omit the branch body, in
which case it defaults to any(). Note that branch bodies are evaluated fully,
so they must be finite. They should be kept small for good performance.
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For example, the following algebraic datatype has three branches:

newtype T =
Type1(A a, B b) { body(a, b) }
or
Type2(C c)
or
Type3()

4.4.2 Standard pattern for using algebraic datatypes
Algebraic datatypes are different from classes. In particular, algebraic datatypes
dont have a toString() member predicate, so you cant use them in a select
clause.

Classes are often used to extend algebraic datatypes (and to provide a
toString() predicate). In the standard QL language libraries, this is usually
done as follows:

• Define a class A that extends the algebraic datatype and optionally declares
abstract predicates.

• For each branch type, define a class B that extends both A and the branch
type, and provide a definition for any abstract predicates from A.

• Annotate the algebraic datatype with private, and leave the classes public.

For example, the following code snippet from the CodeQL data-flow library for
C# defines classes for dealing with tainted or untainted values. In this case, it
doesnt make sense for TaintType to extend a database type. It is part of the taint
analysis, not the underlying program, so its helpful to extend a new type (namely
TTaintType):

private newtype TTaintType =
TExactValue()
or
TTaintedValue()

(continues on next page)
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(continued from previous page)

/** Describes how data is tainted. */
class TaintType extends TTaintType {

string toString() {
this = TExactValue() and result = "exact"
or
this = TTaintedValue() and result = "tainted"

}
}

/** A taint type where the data is untainted. */
class Untainted extends TaintType, TExactValue {
}

/** A taint type where the data is tainted. */
class Tainted extends TaintType, TTaintedValue {
}

4.5 Type unions
Type unions are user-defined types that are declared with the keyword class.
The syntax resembles type aliases, but with two or more type expressions on the
right-hand side.

Type unions are used for creating restricted subsets of an existing algebraic
datatype, by explicitly selecting a subset of the branches of that datatype and
binding them to a new type. Type unions of database types are also supported.

You can use a type union to give a name to a subset of the branches from an
algebraic datatype. In some cases, using the type union over the whole algebraic
datatype can avoid spurious recursion in predicates. For example, the following
construction is legal:

newtype InitialValueSource =
ExplicitInitialization(VarDecl v) { exists(v.getInitializer()) } or
ParameterPassing(Call c, int pos) { exists(c.getParameter(pos)) } or

(continues on next page)
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(continued from previous page)

UnknownInitialGarbage(VarDecl v) { not exists(DefiniteInitialization␣
,→di | v = target(di)) }

class DefiniteInitialization = ParameterPassing or␣
,→ExplicitInitialization;

VarDecl target(DefiniteInitialization di) {
di = ExplicitInitialization(result) or
exists(Call c, int pos | di = ParameterPassing(c, pos) and

result = c.getCallee().getFormalArg(pos))
}

However, a similar implementation that restricts InitialValueSource
in a class extension is not valid. If we had implemented
DefiniteInitialization as a class extension instead, it would trig-
ger a type test for InitialValueSource. This results in an il-
legal recursion DefiniteInitialization -> InitialValueSource
-> UnknownInitialGarbage -> ňDefiniteInitialization since
UnknownInitialGarbage relies on DefiniteInitialization:

// THIS WON'T WORK: The implicit type check for InitialValueSource␣
,→involves an illegal recursion

// DefiniteInitialization -> InitialValueSource ->␣
,→UnknownInitialGarbage -> ňDefiniteInitialization!

class DefiniteInitialization extends InitialValueSource {
DefiniteInitialization() {

this instanceof ParameterPassing or this instanceof␣
,→ExplicitInitialization
}
// ...

}

Type unions are supported from release 2.2.0 of the CodeQL CLI.
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4.6 Database types
Database types are defined in the database schema. This means that they depend
on the database that you are querying, and vary according to the data you are
analyzing.

For example, if you are querying a CodeQL database for a Java project, the
database types may include @ifstmt, representing an if statement in the Java
code, and @variable, representing a variable.

4.7 Type compatibility
Not all types are compatible. For example, 4 < "five" doesnt make sense, since
you cant compare an int to a string.

To decide when types are compatible, there are a number of different type uni-
verses in QL.

The universes in QL are:

• One for each primitive type (except int and float, which are in the same
universe of numbers).

• One for each database type.

• One for each branch of an algebraic datatype.

For example, when defining a class this leads to the following restrictions:

• A class cant extend multiple primitive types.

• A class cant extend multiple different database types.

• A class cant extend multiple different branches of an algebraic datatype.

32 Chapter 4. Types



CHAPTER

FIVE

MODULES

Modules provide a way of organizing QL code by grouping together related types,
predicates, and other modules.

You can import modules into other files, which avoids duplication, and helps
structure your code into more manageable pieces.

5.1 Defining a module
There are various ways to define moduleshere is an example of the simplest way,
declaring an explicit module named Example containing a class OneTwoThree:

module Example {
class OneTwoThree extends int {

OneTwoThree() {
this = 1 or this = 2 or this = 3

}
}

}

The name of a module can be any identifier that starts with an uppercase or
lowercase letter.

.ql or .qll files also implicitly define modules. Read more about the different
kinds of modules below.

You can also annotate a module. See the list of annotations available for modules.
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Note that you can only annotate explicit modules. File modules cannot be anno-
tated.

5.2 Kinds of modules

5.2.1 File modules
Each query file (extension .ql) and library file (extension .qll) implicitly defines
a module. The module has the same name as the file, but any spaces in the file
name are replaced by underscores (_). The contents of the file form the body of
the module.

Library modules

A library module is defined by a .qll file. It can contain any of the elements
listed in Module bodies below, apart from select clauses.

For example, consider the following QL library:

OneTwoThreeLib.qll

class OneTwoThree extends int {
OneTwoThree() {

this = 1 or this = 2 or this = 3
}

}

This file defines a library module named OneTwoThreeLib. The body of this mod-
ule defines the class OneTwoThree.

Query modules

A query module is defined by a .ql file. It can contain any of the elements listed
in Module bodies below.

Query modules are slightly different from other modules:

• A query module cant be imported.
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• A query module must have at least one query in its namespace. This is usually
a select clause, but can also be a query predicate.

For example:

OneTwoQuery.ql

import OneTwoThreeLib

from OneTwoThree ott
where ott = 1 or ott = 2
select ott

This file defines a query module named OneTwoQuery. The body of this module
consists of an import statement and a select clause.

5.2.2 Explicit modules
You can also define a module within another module. This is an explicit module
definition.

An explicit module is defined with the keyword module followed by the module
name, and then the module body enclosed in braces. It can contain any of the
elements listed in Module bodies below, apart from select clauses.

For example, you could add the following QL snippet to the library file OneT-
woThreeLib.qll defined above:

...
module M {

class OneTwo extends OneTwoThree {
OneTwo() {

this = 1 or this = 2
}

}
}

This defines an explicit module named M. The body of this module defines the
class OneTwo.
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5.3 Module bodies
The body of a module is the code inside the module definition, for example the
class OneTwo in the explicit module M.

In general, the body of a module can contain the following constructs:

• Import statements

• Predicates

• Types (including user-defined classes)

• Aliases

• Explicit modules

• Select clauses (only available in a query module)

5.4 Importing modules
The main benefit of storing code in a module is that you can reuse it in other mod-
ules. To access the contents of an external module, you can import the module
using an import statement.

When you import a module this brings all the names in its namespace, apart from
private names, into the namespace of the current module.

5.4.1 Import statements
Import statements are used for importing modules. They are of the form:

import <module_expression1> as <name>
import <module_expression2>

Import statements are usually listed at the beginning of the module. Each import
statement imports one module. You can import multiple modules by including
multiple import statements (one for each module you want to import). An import
statement can also be annotated with private.
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You can import a module under a different name using the as keyword, for ex-
ample import javascript as js.

The <module_expression> itself can be a module name, a selection, or a quali-
fied reference. See Name resolution for more details.

For information about how import statements are looked up, see Module resolu-
tion in the QL language specification.
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ALIASES

An alias is an alternative name for an existing QL entity.

Once youve defined an alias, you can use that new name to refer to the entity in
the current modules namespace.

6.1 Defining an alias
You can define an alias in the body of any module. To do this, you should specify:

1. The keyword module, class, or predicate to define an alias for a module,
type, or non-member predicate respectively.

2. The name of the alias. This should be a valid name for that kind of entity.
For example, a valid predicate alias starts with a lowercase letter.

3. A reference to the QL entity. This includes the original name of the entity
and, for predicates, the arity of the predicate.

You can also annotate an alias. See the list of annotations available for aliases.

Note that these annotations apply to the name introduced by the alias (and not
the underlying QL entity itself). For example, an alias can have different visibility
to the name that it aliases.

6.1.1 Module aliases
Use the following syntax to define an alias for a module:
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module ModAlias = ModuleName;

For example, if you create a new module NewVersion that is an updated version
of OldVersion, you could deprecate the name OldVersion as follows:

deprecated module OldVersion = NewVersion;

That way both names resolve to the same module, but if you use the name
OldVersion, a deprecation warning is displayed.

6.1.2 Type aliases
Use the following syntax to define an alias for a type:

class TypeAlias = TypeName;

Note that class is just a keyword. You can define an alias for any typenamely,
primitive types, database types and user-defined classes.

For example, you can use an alias to abbreviate the name of the primitive type
boolean to bool:

class bool = boolean;

Or, to use a class OneTwo defined in a module M in OneTwoThreeLib.qll, you
could create an alias to use the shorter name OT instead:

import OneTwoThreeLib

class OT = M::OneTwo;

...

from OT ot
select ot
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6.1.3 Predicate aliases
Use the following syntax to define an alias for a non-member predicate:

predicate PredAlias = PredicateName/Arity;

This works for predicates with or without result.

For example, suppose you frequently use the following predicate, which calcu-
lates the successor of a positive integer less than ten:

int getSuccessor(int i) {
result = i + 1 and
i in [1 .. 9]

}

You can use an alias to abbreviate the name to succ:

predicate succ = getSuccessor/1;

As an example of a predicate without result, suppose you have a predicate that
holds for any positive integer less than ten:

predicate isSmall(int i) {
i in [1 .. 9]

}

You could give the predicate a more descriptive name as follows:

predicate lessThanTen = isSmall/1;

6.1. Defining an alias 41





CHAPTER

SEVEN

VARIABLES

Variables in QL are used in a similar way to variables in algebra or logic. They
represent sets of values, and those values are usually restricted by a formula.

This is different from variables in some other programming languages, where
variables represent memory locations that may contain data. That data can also
change over time. For example, in QL, n = n + 1 is an equality formula that
holds only if n is equal to n + 1 (so in fact it does not hold for any numeric
value). In Java, n = n + 1 is not an equality, but an assignment that changes
the value of n by adding 1 to the current value.

7.1 Declaring a variable
All variable declarations consist of a type and a name for the variable. The name
can be any identifier that starts with an uppercase or lowercase letter.

For example, int i, SsaDefinitionNode node, and LocalScopeVariable lsv
declare variables i, node, and lsv with types int, SsaDefinitionNode, and
LocalScopeVariable respectively.

Variable declarations appear in different contexts, for example in a select clause,
inside a quantified formula, as an argument of a predicate, and many more.

Conceptually, you can think of a variable as holding all the values that its type
allows, subject to any further constraints.

For example, consider the following select clause:
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from int i
where i in [0 .. 9]
select i

Just based on its type, the variable i could contain all integers. However, it
is constrained by the formula i in [0 .. 9]. Consequently, the result of the
select clause is the ten numbers between 0 and 9 inclusive.

As an aside, note that the following query leads to a compile-time error:

from int i
select i

In theory, it would have infinitely many results, as the variable i is not constrained
to a finite number of possible values. See Binding for more information.

7.2 Free and bound variables
Variables can have different roles. Some variables are free, and their values di-
rectly affect the value of an expression that uses them, or whether a formula that
uses them holds or not. Other variables, called bound variables, are restricted to
specific sets of values.

It might be easiest to understand this distinction in an example. Take a look at
the following expressions:

"hello".indexOf("l")

min(float f | f in [-3 .. 3])

(i + 7) * 3

x.sqrt()

The first expression doesnt have any variables. It finds the (zero-based) indices
of where "l" occurs in the string "hello", so it evaluates to 2 and 3.
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The second expression evaluates to -3, the minimum value in the range [-3
.. 3]. Although this expression uses a variable f, it is just a placeholder or
dummy variable, and you cant assign any values to it. You could replace f with
a different variable without changing the meaning of the expression. For exam-
ple, min(float f | f in [-3 .. 3]) is always equal to min(float other |
other in [-3 .. 3]). This is an example of a bound variable.

What about the expressions (i + 7) * 3 and x.sqrt()? In these two cases, the
values of the expressions depend on what values are assigned to the variables i
and x respectively. In other words, the value of the variable has an impact on the
value of the expression. These are examples of free variables.

Similarly, if a formula contains free variables, then the formula can hold or not
hold depending on the values assigned to those variables1. For example:

"hello".indexOf("l") = 1

min(float f | f in [-3 .. 3]) = -3

(i + 7) * 3 instanceof int

exists(float y | x.sqrt() = y)

The first formula doesnt contain any variables, and it never holds (since "hello".
indexOf("l") has values 2 and 3, never 1).

The second formula only contains a bound variable, so is unaffected by changes
to that variable. Since min(float f | f in [-3 .. 3]) is equal to -3, this
formula always holds.

The third formula contains a free variable i. Whether or not the formula holds,
depends on what values are assigned to i. For example, if i is assigned 1 or 2 (or
any other int) then the formula holds. On the other hand, if i is assigned 3.5,
then it doesnt hold.

1 This is a slight simplification. There are some formulas that are always true or always false,
regardless of the assignments to their free variables. However, you wont usually use these when
youre writing QL. For example, and a = a is always true (known as a tautology), and x and not
x is always false.
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The last formula contains a free variable x and a bound variable y. If x is assigned
a non-negative number, then the final formula holds. On the other hand, if x is
assigned -9 for example, then the formula doesnt hold. The variable y doesnt
affect whether the formula holds or not.

For more information about how assignments to free variables are computed, see
Evaluation of QL programs.
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An expression evaluates to a set of values and has a type.

For example, the expression 1 + 2 evaluates to the integer 3 and the expression
"QL" evaluates to the string "QL". 1 + 2 has type int and "QL" has type string.

The following sections describe the expressions that are available in QL.

8.1 Variable references
A variable reference is the name of a declared variable. This kind of expression
has the same type as the variable it refers to.

For example, if you have declared the variables int i and LocalScopeVariable
lsv, then the expressions i and lsv have types int and LocalScopeVariable
respectively.

You can also refer to the variables this and result. These are used in predicate
definitions and act in the same way as other variable references.

8.2 Literals
You can express certain values directly in QL, such as numbers, booleans, and
strings.

• Boolean literals: These are the values true and false.
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• Integer literals: These are sequences of decimal digits (0 through 9), possibly
starting with a minus sign (-). For example:

0
42
-2048

• Float literals: These are sequences of decimal digits separated by a dot (.),
possibly starting with a minus sign (-). For example:

2.0
123.456
-100.5

• String literals: These are finite strings of 16-bit characters. You can define
a string literal by enclosing characters in quotation marks ("..."). Most
characters represent themselves, but there are a few characters that you need
to escape with a backslash. The following are examples of string literals:

"hello"
"They said, \"Please escape quotation marks!\""

See String literals in the QL language specification for more details.

Note: there is no date literal in QL. Instead, to specify a date, you should
convert a string to the date that it represents using the toDate() predi-
cate. For example, "2016-04-03".toDate() is the date April 3, 2016, and
"2000-01-01 00:00:01".toDate() is the point in time one second after
New Year 2000.

The following string formats are recognized as dates:

– ISO dates, such as "2016-04-03 17:00:24". The seconds part is
optional (assumed to be "00" if its missing), and the entire time part
can also be missing (in which case its assumed to be "00:00:00").

– Short-hand ISO dates, such as "20160403".

– UK-style dates, such as "03/04/2016".
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– Verbose dates, such as "03 April 2016".

8.3 Parenthesized expressions
A parenthesized expression is an expression surrounded by parentheses, ( and ).
This expression has exactly the same type and values as the original expression.
Parentheses are useful for grouping expressions together to remove ambiguity
and improve readability.

8.4 Ranges
A range expression denotes a range of values ordered between two expressions.
It consists of two expressions separated by .. and enclosed in brackets ([ and ]).
For example, [3 .. 7] is a valid range expression. Its values are any integers
between 3 and 7 (including 3 and 7 themselves).

In a valid range, the start and end expression are integers, floats, or dates. If one
of them is a date, then both must be dates. If one of them is an integer and the
other a float, then both are treated as floats.

8.5 Set literal expressions
A set literal expression allows the explicit listing of a choice between several val-
ues. It consists of a comma-separated collection of expressions that are enclosed
in brackets ([ and ]). For example, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
is a valid set literal expression. Its values are the first ten prime numbers.

The values of the contained expressions need to be of compatible types for a valid
set literal expression. Furthermore, at least one of the set elements has to be of
a type that is a supertype of the types of all the other contained expressions.

Set literals are supported from release 2.1.0 of the CodeQL CLI, and release 1.24
of LGTM Enterprise.
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8.6 Super expressions
Super expressions in QL are similar to super expressions in other programming
languages, such as Java. You can use them in predicate calls, when you want to
use the predicate definition from a supertype. In practice, this is useful when a
predicate inherits two definitions from its supertypes. In that case, the predicate
must override those definitions to avoid ambiguity. However, if you want to use
the definition from a particular supertype instead of writing a new definition, you
can use a super expression.

In the following example, the class C inherits two definitions of the predicate
getANumber()one from A and one from B. Instead of overriding both definitions,
it uses the definition from B.

class A extends int {
A() { this = 1 }
int getANumber() { result = 2 }

}

class B extends int {
B() { this = 1 }
int getANumber() { result = 3 }

}

class C extends A, B {
// Need to define `int getANumber()`; otherwise it would be␣

,→ambiguous
int getANumber() {

result = B.super.getANumber()
}

}

from C c
select c, c.getANumber()

The result of this query is 1, 3.
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8.7 Calls to predicates (with result)
Calls to predicates with results are themselves expressions, unlike calls to predi-
cates without results which are formulas. See Calls to predicates in the Formulas
topic for more general information about calls.

A call to a predicate with result evaluates to the values of the result variable of
the called predicate.

For example a.getAChild() is a call to a predicate getAChild() on a variable
a. This call evaluates to the set of children of a.

8.8 Aggregations
An aggregation is a mapping that computes a result value from a set of input
values that are specified by a formula.

The general syntax is:

<aggregate>(<variable declarations> | <formula> | <expression>)

The variables declared in <variable declarations> are called the aggregation
variables.

Ordered aggregates (namely min, max, rank, concat, and strictconcat) are
ordered by their <expression> values by default. The ordering is either numeric
(for integers and floating point numbers) or lexicographic (for strings). Lexico-
graphic ordering is based on the Unicode value of each character.

To specify a different order, follow <expression> with the keywords order by,
then the expression that specifies the order, and optionally the keyword asc or
desc (to determine whether to order the expression in ascending or descending
order). If you dont specify an ordering, it defaults to asc.

The following aggregates are available in QL:

• count: This aggregate determines the number of distinct values of
<expression> for each possible assignment of the aggregation variables.
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For example, the following aggregation returns the number of files that have
more than 500 lines:

count(File f | f.getTotalNumberOfLines() > 500 | f)

If there are no possible assignments to the aggregation variables that satisfy
the formula, as in count(int i | i = 1 and i = 2 | i), then count de-
faults to the value 0.

• min and max: These aggregates determine the smallest (min) or largest (max)
value of <expression> among the possible assignments to the aggregation
variables. In this case, <expression> must be of numeric type or of type
string.

For example, the following aggregation returns the name of the .js file (or
files) with the largest number of lines:

max(File f | f.getExtension() = "js" | f.getBaseName() order by f.
,→getTotalNumberOfLines())

The following aggregation returns the minimum string s out of the three
strings mentioned below, that is, the string that comes first in the lexico-
graphic ordering of all the possible values of s. (In this case, it returns "De
Morgan".)

min(string s | s = "Tarski" or s = "Dedekind" or s = "De Morgan" |␣
,→s)

• avg: This aggregate determines the average value of <expression> for all
possible assignments to the aggregation variables. The type of <expression>
must be numeric. If there are no possible assignments to the aggregation
variables that satisfy the formula, the aggregation fails and returns no values.
In other words, it evaluates to the empty set.

For example, the following aggregation returns the average of the integers 0,
1, 2, and 3:
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avg(int i | i = [0 .. 3] | i)

• sum: This aggregate determines the sum of the values of <expression>
over all possible assignments to the aggregation variables. The type of
<expression> must be numeric. If there are no possible assignments to the
aggregation variables that satisfy the formula, then the sum is 0.

For example, the following aggregation returns the sum of i * j for all pos-
sible values of i and j:

sum(int i, int j | i = [0 .. 2] and j = [3 .. 5] | i * j)

• concat: This aggregate concatenates the values of <expression> over all
possible assignments to the aggregation variables. Note that <expression>
must be of type string. If there are no possible assignments to the aggre-
gation variables that satisfy the formula, then concat defaults to the empty
string.

For example, the following aggregation returns the string "3210", that is, the
concatenation of the strings "0", "1", "2", and "3" in descending order:

concat(int i | i = [0 .. 3] | i.toString() order by i desc)

The concat aggregate can also take a second expression, separated from
the first one by a comma. This second expression is inserted as a separator
between each concatenated value.

For example, the following aggregation returns "0|1|2|3":

concat(int i | i = [0 .. 3] | i.toString(), "|")

• rank: This aggregate takes the possible values of <expression> and ranks
them. In this case, <expression> must be of numeric type or of type string.
The aggregation returns the value that is ranked in the position specified by
the rank expression. You must include this rank expression in brackets after
the keyword rank.
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For example, the following aggregation returns the value that is ranked 4th
out of all the possible values. In this case, 8 is the 4th integer in the range
from 5 through 15:

rank[4](int i | i = [5 .. 15] | i)

Note that the rank indices start at 1, so rank[0](...) returns no results.

• strictconcat, strictcount, and strictsum: These aggregates work like
concat, count, and sum respectively, except that they are strict. That is, if
there are no possible assignments to the aggregation variables that satisfy
the formula, then the entire aggregation fails and evaluates to the empty set
(instead of defaulting to 0 or the empty string). This is useful if youre only
interested in results where the aggregation body is non-trivial.

• unique: This aggregate depends on the values of <expression> over all pos-
sible assignments to the aggregation variables. If there is a unique value of
<expression> over the aggregation variables, then the aggregate evaluates
to that value. Otherwise, the aggregate has no value.

For example, the following query returns the positive integers 1, 2, 3, 4, 5.
For negative integers x, the expressions x and x.abs() have different values,
so the value for y in the aggregate expression is not uniquely determined.

from int x
where x in [-5 .. 5] and x != 0
select unique(int y | y = x or y = x.abs() | y)

The unique aggregate is supported from release 2.1.0 of the CodeQL CLI,
and release 1.24 of LGTM Enterprise.

8.8.1 Evaluation of aggregates
In general, aggregate evaluation involves the following steps:

1. Determine the input variables: these are the aggregation variables declared
in <variable declarations> and also the variables declared outside of the
aggregate that are used in some component of the aggregate.
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2. Generate all possible distinct tuples (combinations) of the values of input
variables such that the <formula> holds true. Note that the same value of
an aggregate variable may appear in multiple distinct tuples. All such occur-
rences of the same value are treated as distinct occurrences when processing
tuples.

3. Apply <expression> on each tuple and collect the generated (distinct) val-
ues. The application of <expression> on a tuple may result in generating
more than one value.

4. Apply the aggregation function on the values generated in step 3 to compute
the final result.

Let us apply these steps to the sum aggregate in the following query:

select sum(int i, int j |
exists(string s | s = "hello".charAt(i)) and exists(string s | s␣

,→= "world!".charAt(j)) | i)

1. Input variables: i, j.

2. All possible tuples (<value of i>, <value of j>) satisfying the given
condition: (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1,
0), (1, 1), ..., (4, 5).

30 tuples are generated in this step.

3. Apply the <expression> i on all tuples. This means selecting all values of
i from all tuples: 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4.

4. Apply the aggregation function sum on the above values to get the final result
60.

If we change <expression> to i + j in the above query, the query re-
sult is 135 since applying i + j on all tuples results in following val-
ues: 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4,
5, 6, 7, 8, 4, 5, 6, 7, 8, 9.

Next, consider the following query:
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select count(string s | s = "hello" | s.charAt(_))

1. s is the input variable of the aggregate.

2. A single tuple "hello" is generated in this step.

3. The <expression> charAt(_) is applied on this tuple. The underscore
_ in charAt(_) is a dont-care expression, which represents any value. s.
charAt(_) generates four distinct values h, e, l, o.

4. Finally, count is applied on these values, and the query returns 4.

8.8.2 Omitting parts of an aggregation
The three parts of an aggregation are not always required, so you can often write
the aggregation in a simpler form:

1. If you want to write an aggregation of the form <aggregate>(<type>
v | <expression> = v | v), then you can omit the <variable
declarations> and <formula> parts and write it as follows:

<aggregate>(<expression>)

For example, the following aggregations determine how many times the letter
l occurs in string "hello". These forms are equivalent:

count(int i | i = "hello".indexOf("l") | i)
count("hello".indexOf("l"))

2. If there only one aggregation variable, you can omit the <expression> part
instead. In this case, the expression is considered to be the aggregation vari-
able itself. For example, the following aggregations are equivalent:

avg(int i | i = [0 .. 3] | i)
avg(int i | i = [0 .. 3])

3. As a special case, you can omit the <expression> part from count even if
there is more than one aggregation variable. In such a case, it counts the
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number of distinct tuples of aggregation variables that satisfy the formula.
In other words, the expression part is considered to be the constant 1. For
example, the following aggregations are equivalent:

count(int i, int j | i in [1 .. 3] and j in [1 .. 3] | 1)
count(int i, int j | i in [1 .. 3] and j in [1 .. 3])

4. You can omit the <formula> part, but in that case you should include two
vertical bars:

<aggregate>(<variable declarations> | | <expression>)

This is useful if you dont want to restrict the aggregation variables any fur-
ther. For example, the following aggregation returns the maximum number
of lines across all files:

max(File f | | f.getTotalNumberOfLines())

5. Finally, you can also omit both the <formula> and <expression> parts. For
example, the following aggregations are equivalent ways to count the num-
ber of files in a database:

count(File f | any() | 1)
count(File f | | 1)
count(File f)

8.8.3 Monotonic aggregates
In addition to standard aggregates, QL also supports monotonic aggregates.
Monotonic aggregates differ from standard aggregates in the way that they deal
with the values generated by the <expression> part of the formula:

• Standard aggregates take the <expression> values for each <formula>
value and flatten them into a list. A single aggregation function is applied to
all the values.

• Monotonic aggregates take an <expression> for each value given by the
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<formula>, and create combinations of all the possible values. The aggrega-
tion function is applied to each of the resulting combinations.

In general, if the <expression> is total and functional, then monotonic aggre-
gates are equivalent to standard aggregates. Results differ when there is not
precisely one <expression> value for each value generated by the <formula>:

• If there are missing <expression> values (that is, there is no <expression>
value for a value generated by the <formula>), monotonic aggregates wont
compute a result, as you cannot create combinations of values including ex-
actly one <expression> value for each value generated by the <formula>.

• If there is more than one <expression> per <formula> result, you can create
multiple combinations of values including exactly one <expression> value
for each value generated by the <formula>. Here, the aggregation function
is applied to each of the resulting combinations.

Recursive monotonic aggregates

Monotonic aggregates may be used recursively, but the recursive call may only
appear in the expression, and not in the range. The recursive semantics for ag-
gregates are the same as the recursive semantics for the rest of QL. For example,
we might define a predicate to calculate the distance of a node in a graph from
the leaves as follows:

int depth(Node n) {
if not exists(n.getAChild())
then result = 0
else result = 1 + max(Node child | child = n.getAChild() |␣

,→depth(child))
}

Here the recursive call is in the expression, which is legal. The recursive seman-
tics for aggregates are the same as the recursive semantics for the rest of QL. If
you understand how aggregates work in the non-recursive case then you should
not find it difficult to use them recursively. However, it is worth seeing how the
evaluation of a recursive aggregation proceeds.

58 Chapter 8. Expressions



QL language reference, Release 1.24

Consider the depth example we just saw with the following graph as input (arrows
point from children to parents):

Then the evaluation of the depth predicate proceeds as follows:
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Stagedepth Comments
0 We always begin with the empty set.
1 (0, b), (0,

d), (0, e)
The nodes with no children have depth 0. The recur-
sive step for a and c fails to produce a value, since
some of their children do not have values for depth.

2 (0, b), (0,
d), (0, e),
(1, c)

The recursive step for c succeeds, since depth now has
a value for all its children (d and e). The recursive step
for a still fails.

3 (0, b), (0,
d), (0, e),
(1, c), (2,
a)

The recursive step for a succeeds, since depth now has
a value for all its children (b and c).

Here, we can see that at the intermediate stages it is very important for the ag-
gregate to fail if some of the children lack a value - this prevents erroneous values
being added.

8.9 Any
The general syntax of an any expression is similar to the syntax of an aggregation,
namely:

any(<variable declarations> | <formula> | <expression>)

You should always include the variable declarations, but the formula and expres-
sion parts are optional.

The any expression denotes any values that are of a particular form and that
satisfy a particular condition. More precisely, the any expression:

1. Introduces temporary variables.

2. Restricts their values to those that satisfy the <formula> part (if its present).

3. Returns <expression> for each of those variables. If there is no
<expression> part, then it returns the variables themselves.
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The following table lists some examples of different forms of any expressions:

Expression Values
any(File f) all Files in the database
any(Element e | e.getName()) the names of all Elements in the

database
any(int i | i = [0 .. 3]) the integers 0, 1, 2, and 3
any(int i | i = [0 .. 3] | i *
i)

the integers 0, 1, 4, and 9

Note: There is also a built-in predicate any(). This is a predicate that always
holds.

8.10 Unary operations
A unary operation is a minus sign (-) or a plus sign (+) followed by an expression
of type int or float. For example:

-6.28
+(10 - 4)
+avg(float f | f = 3.4 or f = -9.8)
-sum(int i | i in [0 .. 9] | i * i)

A plus sign leaves the values of the expression unchanged, while a minus sign
takes the arithmetic negations of the values.

8.11 Binary operations
A binary operation consists of an expression, followed by a binary operator, fol-
lowed by another expression. For example:
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5 % 2
(9 + 1) / (-2)
"Q" + "L"
2 * min(float f | f in [-3 .. 3])

You can use the following binary operators in QL:

Name Symbol
Addition/concatenation +
Multiplication *
Division /
Subtraction -
Modulo %

If both expressions are numbers, these operators act as standard arithmetic op-
erators. For example, 10.6 - 3.2 has value 7.4, 123.456 * 0 has value 0, and
9 % 4 has value 1 (the remainder after dividing 9 by 4). If both operands are
integers, then the result is an integer. Otherwise the result is a floating-point
number.

You can also use + as a string concatenation operator. In this case, at least one
of the expressions must be a stringthe other expression is implicitly converted
to a string using the toString() predicate. The two expressions are concate-
nated, and the result is a string. For example, the expression 221 + "B" has
value "221B".

8.12 Casts
A cast allows you to constrain the type of an expression. This is similar to casting
in other languages, for example in Java.

You can write a cast in two ways:

• As a postfix cast: A dot followed by the name of a type in parentheses.
For example, x.(Foo) restricts the type of x to Foo.
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• As a prefix cast: A type in parentheses followed by another expression.
For example, (Foo)x also restricts the type of x to Foo.

Note that a postfix cast is equivalent to a prefix cast surrounded by parenthesesx.
(Foo) is exactly equivalent to ((Foo)x).

Casts are useful if you want to call a member predicate that is only defined for
a more specific type. For example, the following query selects Java classes that
have a direct supertype called List:

import java

from Type t
where t.(Class).getASupertype().hasName("List")
select t

Since the predicate getASupertype() is defined for Class, but not for Type, you
cant call t.getASupertype() directly. The cast t.(Class) ensures that t is of
type Class, so it has access to the desired predicate.

If you prefer to use a prefix cast, you can rewrite the where part as:

where ((Class)t).getASupertype().hasName("List")

8.13 Dont-care expressions
This is an expression written as a single underscore _. It represents any value.
(You dont care what the value is.)

Unlike other expressions, a dont-care expression does not have a type. In prac-
tice, this means that _ doesnt have any member predicates, so you cant call _.
somePredicate().

For example, the following query selects all the characters in the string "hello":

from string s
where s = "hello".charAt(_)
select s
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The charAt(int i) predicate is defined on strings and usually takes an int argu-
ment. Here the dont care expression _ is used to tell the query to select characters
at every possible index. The query returns the values h, e, l, and o.
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NINE

FORMULAS

Formulas define logical relations between the free variables used in expressions.

Depending on the values assigned to those free variables, a formula can be true or
false. When a formula is true, we often say that the formula holds. For example,
the formula x = 4 + 5 holds if the value 9 is assigned to x, but it doesnt hold for
other assignments to x. Some formulas dont have any free variables. For example
1 < 2 always holds, and 1 > 2 never holds.

You usually use formulas in the bodies of classes, predicates, and select clauses
to constrain the set of values that they refer to. For example, you can define a
class containing all integers i for which the formula i in [0 .. 9] holds.

The following sections describe the kinds of formulas that are available in QL.

9.1 Comparisons
A comparison formula is of the form:

<expression> <operator> <expression>

See the tables below for an overview of the available comparison operators.

9.1.1 Order
To compare two expressions using one of these order operators, each expression
must have a type and those types must be compatible and orderable.
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Name Symbol
Greater than >
Greater than or equal to >=
Less than <
Less than or equal to <=

For example, the formulas "Ann" < "Anne" and 5 + 6 >= 11 both hold.

9.1.2 Equality
To compare two expressions using =, at least one of the expressions must have a
type. If both expressions have a type, then their types must be compatible.

To compare two expressions using !=, both expressions must have a type. Those
types must also be compatible.

Name Symbol
Equal to =
Not equal to !=

For example, x.sqrt() = 2 holds if x is 4, and 4 != 5 always holds.

For expressions A and B, the formula A = B holds if there is a pair of valuesone
from A and one from Bthat are the same. In other words, A and B have at least
one value in common. For example, [1 .. 2] = [2 .. 5] holds, since both
expressions have the value 2.

As a consequence, A != B has a very different meaning to the negation not A =
B1:

1 The difference between A != B and not A = B is due to the underlying quantifiers. If you
think of A and B as sets of values, then A != B means:

exists( a, b | a in A and b in B | a != b )

On the other hand, not A = B means:

not exists( a, b | a in A and b in B | a = b )

This is equivalent to forall( a, b | a in A and b in B | a != b ), which is very differ-
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• A != B holds if there is a pair of values (one from A and one from B) that are
different.

• not A = B holds if it is not the case that there is a pair of values that are the
same. In other words, A and B have no values in common.

Examples

1. If both expressions have a single value (for example 1 and 0), then comparison is straightforward:

• 1 != 0 holds.

• 1 = 0 doesnt hold.

• not 1 = 0 holds.

2. Now compare 1 and [1 .. 2]:

• 1 != [1 .. 2] holds, because 1 != 2.

• 1 = [1 .. 2] holds, because 1 = 1.

• not 1 = [1 .. 2] doesnt hold, because there is a common value
(1).

3. Compare 1 and none() (the empty set):

• 1 != none() doesnt hold, because there are no values in none(), so
no values that are not equal to 1.

• 1 = none() also doesnt hold, because there are no values in none(),
so no values that are equal to 1.

• not 1 = none() holds, because there are no common values.

9.2 Type checks
A type check is a formula that looks like:

ent from the first formula.
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<expression> instanceof <type>

You can use a type check formula to check whether an expression has a cer-
tain type. For example, x instanceof Person holds if the variable x has type
Person.

9.3 Range checks
A range check is a formula that looks like:

<expression> in <range>

You can use a range check formula to check whether a numeric expression is
in a given range. For example, x in [2.1 .. 10.5] holds if the variable x is
between the values 2.1 and 10.5 (including 2.1 and 10.5 themselves).

Note that <expression> in <range> is equivalent to <expression> =
<range>. Both formulas check whether the set of values denoted by
<expression> is the same as the set of values denoted by <range>.

9.4 Calls to predicates
A call is a formula or expression that consists of a reference to a predicate and a
number of arguments.

For example, isThree(x) might be a call to a predicate that holds if the argument
x is 3, and x.isEven() might be a call to a member predicate that holds if x is
even.

A call to a predicate can also contain a closure operator, namely * or +. For
example, a.isChildOf+(b) is a call to the transitive closure of isChildOf(), so
it holds if a is a descendent of b.

The predicate reference must resolve to exactly one predicate. See Name resolu-
tion for more information about how a predicate reference is resolved.
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If the call resolves to a predicate without result, then the call is a formula.

It is also possible to call a predicate with result. This kind of call is an expression in
QL, instead of a formula. See Calls to predicates (with result) for the corresponding
topic.

9.5 Parenthesized formulas
A parenthesized formula is any formula surrounded by parentheses, ( and ). This
formula has exactly the same meaning as the enclosed formula. The parentheses
often help to improve readability and group certain formulas together.

9.6 Quantified formulas
A quantified formula introduces temporary variables and uses them in formulas
in its body. This is a way to create new formulas from existing ones.

9.6.1 Explicit quantifiers
The following explicit quantifiers are the same as the usual existential and uni-
versal quantifiers in mathematical logic.

exists

This quantifier has the following syntax:

exists(<variable declarations> | <formula>)

You can also write exists(<variable declarations> | <formula 1> |
<formula 2>). This is equivalent to exists(<variable declarations> |
<formula 1> and <formula 2>).

This quantified formula introduces some new variables. It holds if there is at least
one set of values that the variables could take to make the formula in the body
true.
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For example, exists(int i | i instanceof OneTwoThree) introduces a tem-
porary variable of type int and holds if any value of that variable has type
OneTwoThree.

forall

This quantifier has the following syntax:

forall(<variable declarations> | <formula 1> | <formula 2>)

forall introduces some new variables, and typically has two formulas in its body.
It holds if <formula 2> holds for all values that <formula 1> holds for.

For example, forall(int i | i instanceof OneTwoThree | i < 5) holds if
all integers that are in the class OneTwoThree are also less than 5. In other words,
if there is a value in OneTwoThree that is greater than or equal to 5, then the
formula doesnt hold.

Note that forall(<vars> | <formula 1> | <formula 2>) is logically the
same as not exists(<vars> | <formula 1> | not <formula 2>).

forex

This quantifier has the following syntax:

forex(<variable declarations> | <formula 1> | <formula 2>)

This quantifier exists as a shorthand for:

forall(<vars> | <formula 1> | <formula 2>) and
exists(<vars> | <formula 1> | <formula 2>)

In other words, forexworks in a similar way to forall, except that it ensures that
there is at least one value for which <formula 1> holds. To see why this is useful,
note that the forall quantifier could hold trivially. For example, forall(int i
| i = 1 and i = 2 | i = 3) holds: there are no integers i which are equal
to both 1 and 2, so the second part of the body (i = 3) holds for every integer
for which the first part holds.
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Since this is often not the behavior that you want in a query, the forex quantifier
is a useful shorthand.

9.6.2 Implicit quantifiers
Implicitly quantified variables can be introduced using dont care expressions.
These are used when you need to introduce a variable to use as an argument
to a predicate call, but dont care about its value. For further information, see
Dont-care expressions.

9.7 Logical connectives
You can use a number of logical connectives between formulas in QL. They allow
you to combine existing formulas into longer, more complex ones.

To indicate which parts of the formula should take precedence, you can use paren-
theses. Otherwise, the order of precedence from highest to lowest is as follows:

1. Negation (not)

2. Conditional formula (if then else)

3. Conjunction (and)

4. Disjunction (or)

5. Implication (implies)

For example, A and B implies C or D is equivalent to (A and B) implies
(C or D).

Similarly, A and not if B then C else D is equivalent to A and (not (if B
then C else D)).

Note that the parentheses in the above examples are not necessary, since they
highlight the default precedence. You usually only add parentheses to override
the default precedence, but you can also add them to make your code easier to
read (even if they arent required).
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The logical connectives in QL work similarly to Boolean connectives in other pro-
gramming languages. Here is a brief overview:

9.7.1 not

You can use the keyword not before a formula. The resulting formula is called a
negation.

not A holds exactly when A doesnt hold.

Example

The following query selects files that are not HTML files.

from File f
where not f.getFileType().isHtml()
select f

Note: You should be careful when using not in a recursive definition, as this
could lead to non-monotonic recursion. For more information, see the section on
Non-monotonic recursion.

9.7.2 if ... then ... else

You can use these keywords to write a conditional formula. This is another way
to simplify notation: if A then B else C is the same as writing (A and B) or
((not A) and C).

Example

With the following definition, visibility(c) returns "public" if x is a public
class and returns "private" otherwise:

string visibility(Class c){
if c.isPublic()
then result = "public"

(continues on next page)
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(continued from previous page)

else result = "private"
}

9.7.3 and

You can use the keyword and between two formulas. The resulting formula is
called a conjunction.

A and B holds if, and only if, both A and B hold.

Example

The following query selects files that have the js extension and contain fewer
than 200 lines of code:

from File f
where f.getExtension() = "js" and

f.getNumberOfLinesOfCode() < 200
select f

9.7.4 or

You can use the keyword or between two formulas. The resulting formula is
called a disjunction.

A or B holds if at least one of A or B holds.

Example

With the following definition, an integer is in the class OneTwoThree if it is equal
to 1, 2, or 3:

class OneTwoThree extends int {
OneTwoThree() {

this = 1 or this = 2 or this = 3
}

(continues on next page)
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(continued from previous page)

...
}

9.7.5 implies

You can use the keyword implies between two formulas. The resulting formula
is called an implication. This is just a simplified notation: A implies B is the
same as writing (not A) or B.

Example

The following query selects any SmallInt that is odd, or a multiple of 4.

class SmallInt extends int {
SmallInt() { this = [1 .. 10] }

}

from SmallInt x
where x % 2 = 0 implies x % 4 = 0
select x
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TEN

ANNOTATIONS

An annotation is a string that you can place directly before the declaration of a
QL entity or name.

For example, to declare a module M as private, you could use:

private module M {
...

}

Note that some annotations act on an entity itself, whilst others act on a particular name for the entity:

• Act on an entity: abstract, cached, external, transient, final,
override, pragma, language, and bindingset

• Act on a name: deprecated, library, private, and query

For example, if you annotate an entity with private, then only that particular
name is private. You could still access that entity under a different name (using
an alias). On the other hand, if you annotate an entity with cached, then the
entity itself is cached.

Here is an explicit example:

module M {
private int foo() { result = 1 }

(continues on next page)
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(continued from previous page)

predicate bar = foo/0;
}

In this case, the query select M::foo() gives a compiler error, since the name
foo is private. The query select M::bar() is valid (giving the result 1), since
the name bar is visible and it is an alias of the predicate foo.

You could apply cached to foo, but not bar, since foo is the declaration of the
entity.

10.1 Overview of annotations
This section describes what the different annotations do, and when you can use
them. You can also find a summary table in the Annotations section of the QL
language specification.

10.1.1 abstract

Available for: classes, member predicates

The abstract annotation is used to define an abstract entity.

For information about abstract classes, see Classes.

Abstract predicates are member predicates that have no body. They can be de-
fined on any class, and should be overridden in non-abstract subtypes.

Here is an example that uses abstract predicates. A common pattern when writing
data flow analysis in QL is to define a configuration class. Such a configuration
must describe, among other things, the sources of data that it tracks. A supertype
of all such configurations might look like this:

abstract class Configuration extends string {
...
/** Holds if `source` is a relevant data flow source. */
abstract predicate isSource(Node source);

(continues on next page)
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(continued from previous page)

...
}

You could then define subtypes of Configuration, which inherit the predicate
isSource, to describe specific configurations. Any non-abstract subtypes must
override it (directly or indirectly) to describe what sources of data they each
track.

In other words, all non-abstract classes that extend Configurationmust override
isSource in their own body, or they must inherit from another class that overrides
isSource:

class ConfigA extends Configuration {
...
// provides a concrete definition of `isSource`
override predicate isSource(Node source) { ... }

}
class ConfigB extends ConfigA {

...
// doesn't need to override `isSource`, because it inherits it from␣

,→ConfigA
}

10.1.2 cached

Available for: classes, algebraic datatypes, characteristic predicates, member pred-
icates, non-member predicates, modules

The cached annotation indicates that an entity should be evaluated in its entirety
and stored in the evaluation cache. All later references to this entity will use the
already-computed data. This affects references from other queries, as well as
from the current query.

For example, it can be helpful to cache a predicate that takes a long time to
evaluate, and is reused in many places.

You should use cached carefully, since it may have unintended consequences. For
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example, cached predicates may use up a lot of storage space, and may prevent
the QL compiler from optimizing a predicate based on the context at each place
it is used. However, this may be a reasonable tradeoff for only having to compute
the predicate once.

If you annotate a class or module with cached, then all non-private entities in its
body must also be annotated with cached, otherwise a compiler error is reported.

10.1.3 deprecated

Available for: classes, algebraic datatypes, member predicates, non-member predi-
cates, fields, modules, aliases

The deprecated annotation is applied to names that are outdated and scheduled
for removal in a future release of QL. If any of your QL files use deprecated names,
you should consider rewriting them to use newer alternatives. Typically, depre-
cated names have a QLDoc comment that tells users which updated element they
should use instead.

For example, the name DataFlowNode is deprecated and has the following QLDoc
comment:

/**
* DEPRECATED: Use `DataFlow::Node` instead.
*
* An expression or function/class declaration,
* viewed as a node in a data flow graph.
*/

deprecated class DataFlowNode extends @dataflownode {
...

}

This QLDoc comment appears when you use the name DataFlowNode in a QL
editor.

10.1.4 external

Available for: non-member predicates
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The external annotation is used on predicates, to define an external template
predicate. This is similar to a database predicate.

10.1.5 transient

Available for: non-member predicates

The transient annotation is applied to non-member predicates that are also
annotated with external, to indicate that they should not be cached to disk
during evaluation. Note, if you attempt to apply transient without external,
the compiler will report an error.

10.1.6 final

Available for: classes, member predicates, fields

The final annotation is applied to entities that cant be overridden or extended.
In other words, a final class cant act as a base type for any other types, and a final
predicate or field cant be overridden in a subclass.

This is useful if you dont want subclasses to change the meaning of a particular
entity.

For example, the predicate hasName(string name) holds if an element has the
name name. It uses the predicate getName() to check this, and it wouldnt make
sense for a subclass to change this definition. In this case, hasName should be
final:

class Element ... {
string getName() { result = ... }
final predicate hasName(string name) { name = this.getName() }

}

10.1.7 library

Available for: classes

10.1. Overview of annotations 79



QL language reference, Release 1.24

Important: This annotation is deprecated. Instead of annotating a name with
library, put it in a private (or privately imported) module.

The library annotation is applied to names that you can only refer to from within
a .qll file. If you try to refer to that name from a file that does not have the .qll
extension, then the QL compiler returns an error.

10.1.8 override

Available for: member predicates, fields

The override annotation is used to indicate that a definition overrides a member
predicate or field from a base type.

If you override a predicate or field without annotating it, then the QL compiler
gives a warning.

10.1.9 private

Available for: classes, algebraic datatypes, member predicates, non-member predi-
cates, imports, fields, modules, aliases

The private annotation is used to prevent names from being exported.

If a name has the annotation private, or if it is accessed through an import
statement annotated with private, then you can only refer to that name from
within the current modules namespace.

10.1.10 query

Available for: non-member predicates, aliases

The query annotation is used to turn a predicate (or a predicate alias) into a
query. This means that it is part of the output of the QL program.
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10.1.11 Compiler pragmas
Available for: characteristic predicates, member predicates, non-member predicates

The following compiler pragmas affect the compilation and optimization of
queries. You should avoid using these annotations unless you experience sig-
nificant performance issues.

Before adding pragmas to your code, contact GitHub to describe the performance
problems. That way we can suggest the best solution for your problem, and take
it into account when improving the QL optimizer.

Inlining

For simple predicates, the QL optimizer sometimes replaces a call to a predicate
with the predicate body itself. This is known as inlining.

For example, suppose you have a definition predicate one(int i) { i = 1 }
and a call to that predicate ... one(y) .... The QL optimizer may inline the
predicate to ... y = 1 ....

You can use the following compiler pragma annotations to control the way the
QL optimizer inlines predicates.

pragma[inline]

The pragma[inline] annotation tells the QL optimizer to always inline the an-
notated predicate into the places where it is called. This can be useful when a
predicate body is very expensive to compute entirely, as it ensures that the pred-
icate is evaluated with the other contextual information at the places where it is
called.

pragma[noinline]

The pragma[noinline] annotation is used to prevent a predicate from being
inlined into the place where it is called. In practice, this annotation is useful when
youve already grouped certain variables together in a helper predicate, to ensure
that the relation is evaluated in one piece. This can help to improve performance.
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The QL optimizers inlining may undo the work of the helper predicate, so its a
good idea to annotate it with pragma[noinline].

pragma[nomagic]

The pragma[nomagic] annotation is used to prevent the QL optimizer from per-
forming the magic sets optimization on a predicate.

This kind of optimization involves taking information from the context of a pred-
icate call and pushing it into the body of a predicate. This is usually beneficial, so
you shouldnt use the pragma[nomagic] annotation unless recommended to do
so by GitHub.

Note that nomagic implies noinline.

pragma[noopt]

The pragma[noopt] annotation is used to prevent the QL optimizer from op-
timizing a predicate, except when its absolutely necessary for compilation and
evaluation to work.

This is rarely necessary and you should not use the pragma[noopt] annotation
unless recommended to do so by GitHub, for example, to help resolve perfor-
mance issues.

When you use this annotation, be aware of the following issues:

1. The QL optimizer automatically orders the conjuncts of a complex formula in
an efficient way. In a noopt predicate, the conjuncts are evaluated in exactly
the order that you write them.

2. The QL optimizer automatically creates intermediary conjuncts to translate
certain formulas into a conjunction of simpler formulas. In a noopt predicate,
you must write these conjunctions explicitly. In particular, you cant chain
predicate calls or call predicates on a cast. You must write them as multiple
conjuncts and explicitly order them.

For example, suppose you have the following definitions:
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class Small extends int {
Small() { this in [1 .. 10] }
Small getSucc() { result = this + 1}

}

predicate p(int i) {
i.(Small).getSucc() = 2

}

predicate q(Small s) {
s.getSucc().getSucc() = 3

}

If you add noopt pragmas, you must rewrite the predicates. For example:

pragma[noopt]
predicate p(int i) {

exists(Small s | s = i and s.getSucc() = 2)
}

pragma[noopt]
predicate q(Small s) {

exists(Small succ |
succ = s.getSucc() and
succ.getSucc() = 3

)
}

10.1.12 Language pragmas
Available for: classes, characteristic predicates, member predicates, non-member
predicates

language[monotonicAggregates]

This annotation allows you to use monotonic aggregates instead of the standard
QL aggregates.
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For more information, see Monotonic aggregates.

10.1.13 Binding sets
Available for: characteristic predicates, member predicates, non-member predicates

bindingset[...]

You can use this annotation to explicitly state the binding sets for a predicate. A
binding set is a subset of the predicates arguments such that, if those arguments
are constrained to a finite set of values, then the predicate itself is finite (that is,
it evaluates to a finite set of tuples).

The bindingset annotation takes a comma-separated list of variables. Each vari-
able must be an argument of the predicate, possibly including this (for charac-
teristic predicates and member predicates) and result (for predicates that return
a result).

See Binding behavior in the Predicates topic for examples and more information.
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ELEVEN

RECURSION

QL provides strong support for recursion. A predicate in QL is said to be recursive
if it depends, directly or indirectly, on itself.

To evaluate a recursive predicate, the QL compiler finds the least fixed point of the
recursion. In particular, it starts with the empty set of values, and finds new values
by repeatedly applying the predicate until the set of values no longer changes.
This set is the least fixed point and hence the result of the evaluation. Similarly,
the result of a QL query is the least fixed point of the predicates referenced in the
query.

In certain cases, you can also use aggregates recursively. For more information,
see Monotonic aggregates.

11.1 Examples of recursive predicates
Here are a few examples of recursive predicates in QL:

11.1.1 Counting from 0 to 100
The following query uses the predicate getANumber() to list all integers from 0
to 100 (inclusive):

int getANumber() {
result = 0
or

(continues on next page)
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(continued from previous page)

result <= 100 and result = getANumber() + 1
}

select getANumber()

The predicate getANumber() evaluates to the set containing 0 and any integers
that are one more than a number already in the set (up to and including 100).

11.1.2 Mutual recursion
Predicates can be mutually recursive, that is, you can have a cycle of predicates
that depend on each other. For example, here is a QL query that counts to 100
using even numbers:

int getAnEven() {
result = 0
or
result <= 100 and result = getAnOdd() + 1

}

int getAnOdd() {
result = getAnEven() + 1

}

select getAnEven()

The results of this query are the even numbers from 0 to 100. You could replace
select getAnEven() with select getAnOdd() to list the odd numbers from 1
to 101.

11.1.3 Transitive closures
The transitive closure of a predicate is a recursive predicate whose results are
obtained by repeatedly applying the original predicate.

In particular, the original predicate must have two arguments (possibly including
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a this or result value) and those arguments must have compatible types.

Since transitive closures are a common form of recursion, QL has two helpful
abbreviations:

1. Transitive closure +

To apply a predicate one or more times, append + to the predicate name.

For example, suppose that you have a class Person with a member predicate
getAParent(). Then p.getAParent() returns any parents of p. The transi-
tive closure p.getAParent+() returns parents of p, parents of parents of p,
and so on.

Using this + notation is often simpler than defining the recursive predicate
explicitly. In this case, an explicit definition could look like this:

Person getAnAncestor() {
result = this.getAParent()
or
result = this.getAParent().getAnAncestor()

}

The predicate getAnAncestor() is equivalent to getAParent+().

2. Reflexive transitive closure *

This is similar to the above transitive closure operator, except that you can
use it to apply a predicate to itself zero or more times.

For example, the result of p.getAParent*() is an ancestor of p (as above),
or p itself.

In this case, the explicit definition looks like this:

Person getAnAncestor2() {
result = this
or
result = this.getAParent().getAnAncestor2()

}
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The predicate getAnAncestor2() is equivalent to getAParent*().

11.2 Restrictions and common errors
While QL is designed for querying recursive data, recursive definitions are some-
times difficult to get right. If a recursive definition contains an error, then usually
you get no results, or a compiler error.

The following examples illustrate common mistakes that lead to invalid recursion:

11.2.1 Empty recursion
Firstly, a valid recursive definition must have a starting point or base case. If a re-
cursive predicate evaluates to the empty set of values, there is usually something
wrong.

For example, you might try to define the predicate getAnAncestor() (from the
above example) as follows:

Person getAnAncestor() {
result = this.getAParent().getAnAncestor()

}

In this case, the QL compiler gives an error stating that this is an empty recursive
call.

Since getAnAncestor() is initially assumed to be empty, there is no way for new
values to be added. The predicate needs a starting point for the recursion, for
example:

Person getAnAncestor() {
result = this.getAParent()
or
result = this.getAParent().getAnAncestor()

}
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11.2.2 Non-monotonic recursion
A valid recursive predicate must also be monotonic. This means that (mutual)
recursion is only allowed under an even number of negations.

Intuitively, this prevents liars paradox situations, where there is no solution to
the recursion. For example:

predicate isParadox() {
not isParadox()

}

According to this definition, the predicate isParadox() holds precisely when it
doesnt hold. This is impossible, so there is no fixed point solution to the recursion.

If the recursion appears under an even number of negations, then this isnt a prob-
lem. For example, consider the following (slightly macabre) member predicate
of class Person:

predicate isExtinct() {
this.isDead() and
not exists(Person descendant | descendant.getAParent+() = this |

not descendant.isExtinct()
)

}

p.isExtinct() holds if p and all of ps descendants are dead.

The recursive call to isExtinct() is nested in an even number of negations, so
this is a valid definition. In fact, you could rewrite the second part of the definition
as follows:

forall(Person descendant | descendant.getAParent+() = this |
descendant.isExtinct()

)
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TWELVE

LEXICAL SYNTAX

The QL syntax includes different kinds of keywords, identifiers, and comments.

For an overview of the lexical syntax, see Lexical syntax in the QL language spec-
ification.

12.1 Comments
All standard one-line and multiline comments, as described in the QL language
specification, are ignored by the QL compiler and are only visible in the source
code. You can also write another kind of comment, namely QLDoc comments.
These comments describe QL entities and are displayed as pop-up information
in QL editors. For information about QLDoc comments, see the QLDoc comment
specification.

The following example uses these three different kinds of comments:

/**
* A QLDoc comment that describes the class `Digit`.
*/

class Digit extends int { // A short one-line comment
Digit() {

this in [0 .. 9]
}

}

(continues on next page)
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(continued from previous page)

/*
A standard multiline comment, perhaps to provide
additional details, or to write a TODO comment.

*/
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THIRTEEN

NAME RESOLUTION

The QL compiler resolves names to program elements.

As in other programming languages, there is a distinction between the names
used in QL code, and the underlying QL entities they refer to.

It is possible for different entities in QL to have the same name, for example if they
are defined in separate modules. Therefore, it is important that the QL compiler
can resolve the name to the correct entity.

When you write your own QL, you can use different kinds of expressions to refer
to entities. Those expressions are then resolved to QL entities in the appropriate
namespace.

In summary, the kinds of expressions are:

• Module expressions

– These refer to modules.

– They can be simple names, qualified references (in import state-
ments), or selections.

• Type expressions

– These refer to types.

– They can be simple names or selections.

• Predicate expressions
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– These refer to predicates.

– They can be simple names or names with arities (for example in an
alias definition), or selections.

13.1 Names
To resolve a simple name (with arity), the compiler looks for that name (and
arity) in the namespaces of the current module.

In an import statement, name resolution is slightly more complicated. For exam-
ple, suppose you define a query module Example.ql with the following import
statement:

import javascript

The compiler first checks for a library module javascript.qll, using the steps
described below for qualified references. If that fails, it checks for an explicit
module named javascript defined in the module namespace of Example.ql.

13.2 Qualified references
A qualified reference is a module expression that uses . as a file path separator.
You can only use such an expression in import statements, to import a library
module defined by a relative path.

For example, suppose you define a query module Example.ql with the following
import statement:

import examples.security.MyLibrary

To find the precise location of this library module, the QL compiler processes the
import statement as follows:

1. The .s in the qualified reference correspond to file path separators, so it first
looks up examples/security/MyLibrary.qll from the directory contain-
ing Example.ql.
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2. If that fails, it looks up examples/security/MyLibrary.qll relative to the
query directory, if any. The query directory is the first enclosing directory
containing a file called qlpack.yml. (Or, in legacy products, a file called
queries.xml.)

3. If the compiler cant find the library file using the above two checks, it looks
up examples/security/MyLibrary.qll relative to each library path entry.
The library path is usually specified using the libraryPathDependencies
of the qlpack.yml file, though it may also depend on the tools you use to
run your query, and whether you have specified any extra settings. For more
information, see Library path in the QL language specification.

If the compiler cannot resolve an import statement, then it gives a compilation
error.

13.3 Selections
You can use a selection to refer to a module, type, or predicate inside a particular
module. A selection is of the form:

<module_expression>::<name>

The compiler resolves the module expression first, and then looks for the name
in the namespaces for that module.

13.3.1 Example
Consider the following library module:

CountriesLib.qll

class Countries extends string {
Countries() {

this = "Belgium"
or
this = "France"
or

(continues on next page)
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(continued from previous page)

this = "India"
}

}

module M {
class EuropeanCountries extends Countries {

EuropeanCountries() {
this = "Belgium"
or
this = "France"

}
}

}

You could write a query that imports CountriesLib and then uses
M::EuropeanCountries to refer to the class EuropeanCountries:

import CountriesLib

from M::EuropeanCountries ec
select ec

Alternatively, you could import the contents of M directly by using the selection
CountriesLib::M in the import statement:

import CountriesLib::M

from EuropeanCountries ec
select ec

That gives the query access to everything within M, but nothing within
CountriesLib that isnt also in M.
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13.4 Namespaces
When writing QL, its useful to understand how namespaces (also known as en-
vironments) work.

As in many other programming languages, a namespace is a mapping from keys
to entities. A key is a kind of identifier, for example a name, and a QL entity is a
module, a type, or a predicate.

Each module in QL has three namespaces:

• The module namespace, where the keys are module names and the entities
are modules.

• The type namespace, where the keys are type names and the entities are
types.

• The predicate namespace, where the keys are pairs of predicate names and
arities, and the entities are predicates.

Its important to know that there is no relation between names in different names-
paces. For example, two different modules can define a predicate getLocation()
without confusion. As long as its clear which namespace you are in, the QL com-
piler resolves the name to the correct predicate.

13.4.1 Global namespaces
The namespaces containing all the built-in entities are called global namespaces,
and are automatically available in any module. In particular:

• The global module namespace is empty.

• The global type namespace has entries for the primitive types int, float,
string, boolean, and date, as well as any database types defined in the
database schema.

• The global predicate namespace includes all the built-in predicates, as well
as any database predicates.

In practice, this means that you can use the built-in types and predicates directly
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in a QL module (without importing any libraries). You can also use any database
predicates and types directlythese depend on the underlying database that you
are querying.

13.4.2 Local namespaces
In addition to the global module, type, and predicate namespaces, each module
defines a number of local module, type, and predicate namespaces.

For a module M, its useful to distinguish between its declared, exported, and
imported namespaces. (These are described generically, but remember that there
is always one for each of modules, types, and predicates.)

• The declared namespaces contain any names that are declaredthat is, de-
finedin M.

• The imported namespaces contain any names exported by the modules that
are imported into M using an import statement.

• The exported namespaces contain any names declared in M, or exported from
a module imported into M, except names annotated with private. This in-
cludes everything in the imported namespaces that was not introduced by a
private import.

This is easiest to understand in an example:

OneTwoThreeLib.qll

import MyFavoriteNumbers

class OneTwoThree extends int {
OneTwoThree() {

this = 1 or this = 2 or this = 3
}

}

private module P {
class OneTwo extends OneTwoThree {

OneTwo() {
(continues on next page)
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(continued from previous page)

this = 1 or this = 2
}

}
}

The module OneTwoThreeLib imports anything that is exported by the module
MyFavoriteNumbers.

It declares the class OneTwoThree and the module P.

It exports the class OneTwoThree and anything that is exported by
MyFavoriteNumbers. It does not export P, since it is annotated with private.

13.4.3 Example
The namespaces of a general QL module are a union of the local namespaces,
the namespaces of any enclosing modules, and the global namespaces. (You can
think of global namespaces as the enclosing namespaces of a top-level module.)

Lets see what the module, type, and predicate namespaces look like in a concrete
example:

For example, you could define a library module Villagers containing some of
the classes and predicates that were defined in the QL tutorials:

Villagers.qll

import tutorial

predicate isBald(Person p) {
not exists(string c | p.getHairColor() = c)

}

class Child extends Person {
Child() {

this.getAge() < 10
}

(continues on next page)
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(continued from previous page)

}

module S {
predicate isSouthern(Person p) {

p.getLocation() = "south"
}

class Southerner extends Person {
Southerner() {

isSouthern(this)
}

}
}

Module namespace

The module namespace of Villagers has entries for:

• The module S.

• Any modules exported by tutorial.

The module namespace of S also has entries for the module S itself, and for any
modules exported by tutorial.

Type namespace

The type namespace of Villagers has entries for:

• The class Child.

• The types exported by the module tutorial.

• The built-in types, namely int, float, string, date, and boolean.

The type namespace of S has entries for:

• All the above types.

• The class Southerner.
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Predicate namespace

The predicate namespace of Villagers has entries for:

• The predicate isBald, with arity 1.

• Any predicates (and their arities) exported by tutorial.

• The built-in predicates.

The predicate namespace of S has entries for:

• All the above predicates.

• The predicate isSouthern, with arity 1.
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EVALUATION OF QL PROGRAMS

A QL program is evaluated in a number of different steps.

14.1 Process
When a QL program is run against a database, it is compiled into a variant of the
logic programming language Datalog. It is optimized for performance, and then
evaluated to produce results.

These results are sets of ordered tuples. An ordered tuple is a finite, ordered
sequence of values. For example, (1, 2, "three") is an ordered tuple with
two integers and a string. There may be intermediate results produced while the
program is being evaluated: these are also sets of tuples.

A QL program is evaluated from the bottom up, so a predicate is usually only
evaluated after all the predicates it depends on are evaluated.

The database includes sets of ordered tuples for the built-in predicates and exter-
nal predicates. Each evaluation starts from these sets of tuples. The remaining
predicates and types in the program are organized into a number of layers, based
on the dependencies between them. These layers are evaluated to produce their
own sets of tuples, by finding the least fixed point of each predicate. (For exam-
ple, see Recursion.)

The programs queries determine which of these sets of tuples make up the final
results of the program. The results are sorted according to any ordering directives
(order by) in the queries.
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For more details about each step of the evaluation process, see the QL language
specification.

14.2 Validity of programs
The result of a query must always be a finite set of values, otherwise it cant be
evaluated. If your QL code contains an infinite predicate or query, the QL compiler
usually gives an error message, so that you can identify the error more easily.

Here are some common ways that you might define infinite predicates. These all
generate compilation errors:

• The following query conceptually selects all values of type int, without re-
stricting them. The QL compiler returns the error 'i' is not bound to a
value:

from int i
select i

• The following predicate generates two errors: 'n' is not bound to a
value and 'result' is not bound to a value:

int timesTwo(int n) {
result = n * 2

}

• The following class Person contains all strings that start with "Peter". There
are infinitely many such strings, so this is another invalid definition. The QL
compiler gives the error message 'this' is not bound to a value:

class Person extends string {
Person() {

this.matches("Peter%")
}

}

To fix these errors, its useful to think about range restriction: A predicate or
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query is range-restricted if each of its variables has at least one binding occur-
rence. A variable without a binding occurrence is called unbound. Therefore,
to perform a range restriction check, the QL compiler verifies that there are no
unbound variables.

14.2.1 Binding
To avoid infinite relations in your queries, you must ensure that there are no
unbound variables. To do this, you can use the following mechanisms:

1. Finite types: Variables of a finite type are bound. In particular, any type that
is not primitive is finite. To give a finite type to a variable, you can declare it
with a finite type, use a cast, or use a type check.

2. Predicate calls: A valid predicate is usually range-restricted, so it binds all
its arguments. Therefore, if you call a predicate on a variable, the variable
becomes bound.

Important: If a predicate uses non-standard binding sets, then it does not
always bind all its arguments. In such a case, whether the predicate call binds
a specific argument depends on which other arguments are bound, and what
the binding sets say about the argument in question. See Binding sets for
more information.

3. Binding operators: Most operators, such as the arithmetic operators, require
that all their operands are bound. For example, you cant add two variables
in QL unless you have a finite set of possible values for both of them.

However, there are some built-in operators that can bind their arguments.
For example, if one side of an equality check (using =) is bound and the other
side is a variable, then the variable becomes bound too. See the table below
for examples.

Intuitively, a binding occurrence restricts the variable to a finite set of values,
while a non-binding occurrence doesnt. Here are some examples to clarify the
difference between binding and non-binding occurrences of variables:
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Variable
occur-
rence

Details

x = 1 Binding: restricts x to the value 1
x != 1,
not x =
1

Not binding

x = 2 +
3, x + 1
= 3

Binding

x in [0
.. 3]

Binding

p(x, _) Binding, since p() is a call to a predicate.
x = y, x
= y + 1

Binding for x if and only if the variable y is bound. Binding for y if
and only if the variable x is bound.

x = y *
2

Binding for x if the variable y is bound. Not binding for y.

x > y Not binding for x or y
"string".
matches(x)

Not binding for x

x.
matches(y)

Not binding for x or y

not (.
.. x
...)

Generally non-binding for x, since negating a binding occurrence
typically makes it non-binding. There are certain exceptions: not
not x = 1 is correctly recognized as binding for x.

sum(int
y | y
= 1 and
x = y |
y)

Not binding for x. strictsum(int y | y = 1 and x = y | y)
would be binding for x. Expressions in the body of an aggregate
are only binding outside of the body if the aggregate is strict.

x = 1
or y =
1

Not binding for x or for y. The first subexpression, x = 1, is bind-
ing for x, and the second subexpression, y = 1, is binding for y.
However, combining them with disjunction is only binding for vari-
ables for which all disjuncts are bindingin this case, thats no vari-
able.
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While the occurrence of a variable can be binding or non-binding, the variables
property of being bound or unbound is a global concepta single binding occur-
rence is enough to make a variable bound.

Therefore, you could fix the infinite examples above by providing a binding oc-
currence. For example, instead of int timesTwo(int n) { result = n * 2
}, you could write:

int timesTwo(int n) {
n in [0 .. 10] and
result = n * 2

}

The predicate now binds n, and the variable result automatically becomes
bound by the computation result = n * 2.
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CHAPTER

FIFTEEN

QL LANGUAGE SPECIFICATION

This is a formal specification for the QL language. It provides a comprehensive
reference for terminology, syntax, and other technical details about QL.

15.1 Introduction
QL is a query language for CodeQL databases. The data is relational: named
relations hold sets of tuples. The query language is a dialect of Datalog, using
stratified semantics, and it includes object-oriented classes.

15.2 Notation
This section describes the notation used in the specification.

15.2.1 Unicode characters
Unicode characters in this document are described in two ways. One is to supply
the character inline in the text, between double quote marks. The other is to
write a capital U, followed by a plus sign, followed by a four-digit hexadecimal
number representing the characters code point. As an example of both, the first
character in the name QL is Q (U+0051).
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15.2.2 Grammars
The syntactic forms of QL constructs are specified using a modified Backus-Naur
Form (BNF). Syntactic forms, including classes of tokens, are named using bare
identifiers. Quoted text denotes a token by its exact sequence of characters in the
source code.

BNF derivation rules are written as an identifier naming the syntactic element,
followed by ::=, followed by the syntax itself.

In the syntax itself, juxtaposition indicates sequencing. The vertical bar (|,
U+007C) indicates alternate syntax. Parentheses indicate grouping. An asterisk
(*, U+002A) indicates repetition zero or more times, and a plus sign (+, U+002B)
indicates repetition one or more times. Syntax followed by a question mark (?,
U+003F) indicates zero or one occurrences of that syntax.

15.3 Architecture
A QL program consists of a query module defined in a QL file and a number of
library modules defined in QLL files that it imports (see Import directives). The
module in the QL file includes one or more queries (see Queries). A module may
also include import directives (see Import directives), non-member predicates (see
Non-member predicates), class definitions (see Classes), and module definitions
(see Modules).

QL programs are interpreted in the context of a database and a library path .
The database provides a number of definitions: database types (see Types), en-
tities (see Values), built-in predicates (see Built-ins), and the database content of
built-in predicates and external predicates (see Evaluation). The library path is a
sequence of file-system directories that hold QLL files.

A QL program can be evaluated (see Evaluation) to produce a set of tuples of
values (see Values).

For a QL program to be valid, it must conform to a variety of conditions that
are described throughout this specification; otherwise the program is said to be
invalid. An implementation of QL must detect all invalid programs and refuse to
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evaluate them.

15.4 Library path
The library path is an ordered list of directory locations. It is used for resolving
module imports (see Module resolution). The library path is not strictly speaking
a core part of the QL language, since different implementations of QL construct
it in slightly different ways. Most QL tools also allow you to explicitly specify
the library path on the command line for a particular invocation, though that is
rarely done, and only useful in very special situations. This section describes the
default construction of the library path.

First, determine the query directory of the .ql file being compiled. Starting with
the directory containing the .ql file, and walking up the directory structure, each
directory is checked for a file called queries.xml or qlpack.yml. The first direc-
tory where such a file is found is the query directory. If there is no such directory,
the directory of the .ql file itself is the query directory.

A queries.xml file that defines a query directory must always contain a single
top-level tag named queries, which has a language attribute set to the identifier
of the active database schema (for example, <queries language="java"/>).

A qlpack.yml file defines a QL pack. The content of a qlpack.yml file is de-
scribed in the CodeQL CLI documentation. This file will not be recognized when
using legacy tools that are not based on the CodeQL CLI (that is, LGTM.com,
LGTM Enterprise, ODASA, CodeQL for Eclipse, and CodeQL for Visual Studio).

If both a queries.xml and a qlpack.yml exist in the same directory, the latter
takes precedence (and the former is assumed to exist for compatibility with older
tooling).

In legacy QL tools that dont recognize qlpack.yml files, the default value of the
library path for each supported language is hard-coded. The tools contain di-
rectories within the ODASA distribution that define the default CodeQL libraries
for the selected language. Which language to use depends on the language at-
tribute of the queries.xml file if not overridden with a --language option to
the ODASA CLI.
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On the other hand, the CodeQL CLI and newer tools based on it (such as GitHub
Code Scanning and the CodeQL extension for Visual Studio Code) construct a
library path using QL packs. For each QL pack added to the library path, the QL
packs named in its libraryPathDependencies will be subsequently added to the
library path, and the process continues until all packs have been resolved. The
actual library path consists of the root directories of the selected QL packs. This
process depends on a mechanism for finding QL packs by pack name, as described
in the CodeQL CLI documentation.

When the query directory contains a queries.xml file but no qlpack.yml, the
QL pack resolution behaves as if it defines a QL pack with no name and a single
library path dependency named legacy-libraries-LANGUAGE where LANGUAGE
is taken from queries.xml. The github/codeql repository provides packs with
names following this pattern, which themselves depend on the actual CodeQL
libraries for each language.

When the query directory contains neither a queries.xml nor qlpack.yml file,
it is considered to be a QL pack with no name and no library dependencies. This
causes the library path to consist of only the query directory itself. This is not
generally useful, but it suffices for running toy examples of QL code that dont use
information from the database.

15.5 Name resolution
All modules have three environments that dictate name resolution. These are
multimaps of keys to declarations.

The environments are:

• The module environment, whose keys are module names and whose values
are modules.

• The type environment, whose keys are type names and whose values are types.

• The predicate environment, whose keys are pairs of predicate names and ari-
ties and whose values are predicates.

If not otherwise specified, then the environment for a piece of syntax is the same
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as the environment of its enclosing syntax.

When a key is resolved in an environment, if there is no value for that key, then
the program is invalid.

Environments may be combined as follows:

• Union. This takes the union of the entry sets of the two environments.

• Overriding union. This takes the union of two environments, but if there are
entries for a key in the first map, then no additional entries for that key are
included from the second map.

A definite environment has at most one entry for each key. Resolution is unique
in a definite environment.

15.5.1 Global environments
The global module environment is empty.

The global type environment has entries for the primitive types int, float,
string, boolean, and date, as well as any types defined in the database schema.

The global predicate environment includes all the built-in classless predicates, as
well as any extensional predicates declared in the database schema.

The program is invalid if any of these environments is not definite.

15.5.2 Module environments
For each of modules, types, and predicates, a module imports, declares, and ex-
ports an environment. These are defined as follows (with X denoting the type of
entity we are currently considering):

• The imported X environment of a module is defined to be the union of the ex-
ported X environments of all the modules which the current module directly
imports (see Import directives).

• The declared X environment of a module is the multimap of X declarations in
the module itself.
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• The exported X environment of a module is the union of the exported X en-
vironments of the modules which the current module directly imports (ex-
cluding private imports), and the declared X environment of the current
module (excluding private declarations).

• The external X environment of a module is the visible X environment of the
enclosing module, if there is one, and otherwise the global X environment.

• The visible X environment is the union of the imported X environment, the
declared X environment, and the external X environment.

The program is invalid if any of these environments is not definite.

Module definitions may be recursive, so the module environments are defined as
the least fixed point of the operator given by the above definition. Since all the
operations involved are monotonic, this fixed point exists and is unique.

15.6 Modules

15.6.1 Module definitions
A QL module definition has the following syntax:

module ::= annotation* "module" modulename "{" moduleBody "}"

moduleBody ::= (import | predicate | class | module | alias | select)*

A module definition extends the current modules declared module environment
with a mapping from the module name to the module definition.

QL files consist of simply a module body without a name and surrounding braces:

ql ::= moduleBody

QL files define a module corresponding to the file, whose name is the same as the
filename.
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15.6.2 Kinds of modules
A module may be:

• A file module, if it is defined implicitly by a QL file.

• A query module, if it is defined by a QL file.

• A library module, if it is not a query module.

A query module must contain one or more queries.

15.6.3 Import directives
An import directive refers to a module identifier:

import ::= annotations "import" importModuleId ("as" modulename)?

qualId ::= simpleId | qualId "." simpleId

importModuleId ::= qualId
| importModuleId "::" simpleId

An import directive may optionally name the imported module using an as dec-
laration. If a name is defined, then the import directive adds to the declared
module environment of the current module a mapping from the name to the dec-
laration of the imported module. Otherwise, the current module directly imports
the imported module.

15.6.4 Module resolution
Module identifiers are resolved to modules as follows.

For simple identifiers:

• First, the identifier is resolved as a one-segment qualified identifier (see be-
low).

• If this fails, the identifier is resolved in the current modules visible module
environment.
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For selection identifiers (a::b):

• The qualifier of the selection (a) is resolved as a module, and then the name
(b) is resolved in the exported module environment of the qualifier module.

For qualified identifiers (a.b):

• Build up a list of candidate search paths, consisting of the current files di-
rectory, then the query directory of the current file, and finally each of the
directories on the library path (in order).

• Determine the first candidate search path that has a matching QLL file for
the import directives qualified name. A QLL file in a candidate search path
is said to match a qualified name if, starting from the candidate search path,
there is a subdirectory for each successive qualifier in the qualified name,
and the directory named by the final qualifier contains a file whose base
name matches the qualified names base name, with the addition of the file
extension .qll. The file and directory names are matched case-sensitively,
regardless of whether the filesystem is case-sensitive or not.

• The resolved module is the module defined by the selected candidate search
path.

A qualified module identifier is only valid within an import.

15.6.5 Module references and active modules
A module M references another module N if any of the following holds:

• M imports N.

• M defines N.

• N is Ms enclosing module.

In a QL program, the active modules are the modules which are referenced tran-
sitively by the query module.
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15.7 Types
QL is a typed language. This section specifies the kinds of types available, their
attributes, and the syntax for referring to them.

15.7.1 Kinds of types
Types in QL are either primitive types, database types, class types, character types
or class domain types.

The primitive types are boolean, date, float, int, and string.

Database types are supplied as part of the database. Each database type has a
name, which is an identifier starting with an at sign (@, U+0040) followed by
lower-case letter. Database types have some number of base types, which are
other database types. In a valid database, the base types relation is non-cyclic.

Class types are defined in QL, in a way specified later in this document (see
Classes). Each class type has a name that is an identifier starting with an upper-
case letter. Each class type has one or more base types, which can be any kind of
type except a class domain type. A class type may be declared abstract.

Any class in QL has an associated class domain type and an associated character
type.

Within the specification the class type for C is written C.class, the character type
is written C.C and the domain type is written C.extends. However the class type
is still named C.

15.7.2 Type references
With the exception of class domain types and character types (which cannot be
referenced explicitly in QL source), a reference to a type is written as the name
of the type. In the case of database types, the name includes the at sign (@,
U+0040).
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type ::= (moduleId "::")? classname | dbasetype | "boolean" | "date" |
,→"float" | "int" | "string"

moduleId ::= simpleId | moduleId "::" simpleId

A type reference is resolved to a type as follows:

• If it is a selection identifier (for example, a::B), then the qualifier (a) is re-
solved as a module (see Module resolution). The identifier (B) is then resolved
in the exported type environment of the qualifier module.

• Otherwise, the identifier is resolved in the current modules visible type envi-
ronment.

15.7.3 Relations among types
Types are in a subtype relationship with each other. Type A is a subtype of type B
if one of the following is true:

• A and B are the same type.

• There is some type C, where A is a subtype of C and C is a subtype of B.

• A and B are database types, and B is a base type of A.

• A is the character type of C, and B is the class domain type of C.

• A is a class type, and B is the character type of A.

• A is a class domain type, and B is a base type of the associated class type.

• A is int and B is float.

Supertypes are the converse of subtypes: A is a supertype of B if B is a subtype of
A.

Types A and B are compatible with each other if they either have a common su-
pertype, or they each have some supertype that is a database type.
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15.7.4 Typing environments
A typing environment is a finite map of variables to types. Each variable in the
map is either an identifier or one of two special symbols: this, and result.

Most forms of QL syntax have a typing environment that applies to them. That
typing environment is determined by the context the syntax appears in.

Note that this is distinct from the type environment, which is a map from type
names to types.

15.7.5 Active types
In a QL program, the active types are those defined in active modules. In the
remainder of this specification, any reference to the types in the program refers
only to the active types.

15.8 Values
Values are the fundamental data that QL programs compute over. This section
specifies the kinds of values available in QL, specifies the sorting order for them,
and describes how values can be combined into tuples.

15.8.1 Kinds of values
There are six kinds of values in QL: one kind for each of the five primitive types,
and entities. Each value has a type.

A boolean value is of type boolean, and may have one of two distinct values:
true or false.

A date value is of type date. It encodes a time and a date in the Gregorian
calendar. Specifically, it includes a year, a month, a day, an hour, a minute, a
second, and a millisecond, each of which are integers. The year ranges from
-16777216 to 16777215, the month from 0 to 11, the day from 1 to 31, the
hour from 0 to 23, the minutes from 0 to 59, the seconds from 0 to 59, and the
milliseconds from 0 to 999.
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A float value is of type float. Each float value is a binary 64-bit floating-point
value as specified in IEEE 754.

An integer value is of type int. Each value is a 32-bit twos complement integer.

A string is a finite sequence of 16-bit characters. The characters are interpreted
as Unicode code points.

The database includes a number of opaque entity values. Each such value has a
type that is one of the database types, and an identifying integer. An entity value
is written as the name of its database type followed by its identifying integer in
parentheses. For example, @tree(12), @person(16), and @location(38132)
are entity values. The identifying integers are left opaque to programmers in
this specification, so an implementation of QL is free to use some other set of
countable labels to identify its entities.

15.8.2 Ordering
Values in general do not have a specified ordering. In particular, entity values
have no specified ordering with entities or any other values. Primitive values,
however, have a total ordering with other primitive values in the same type. Prim-
itives types and their subtypes are said to be orderable.

For booleans, false is ordered before true.

For dates, the ordering is chronological.

For floats, the ordering is as specified in IEEE 754 when one exists, except that
NaN is considered equal to itself and is ordered after all other floats, and negative
zero is considered to be strictly less than positive zero.

For integers, the ordering is as for twos complement integers.

For strings, the ordering is lexicographic.

15.8.3 Tuples
Values can be grouped into tuples in two different ways.
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An ordered tuple is a finite, ordered sequence of values. For example, (1, 2,
"three") is an ordered sequence of two integers and a string.

A named tuple is a finite map of variables to values. Each variable in a named
tuple is either an identifier, this, or result.

A variable declaration list provides a sequence of variables and a type for each
one:

var_decls ::= var_decl ("," var_decl)*
var_decl ::= type simpleId

A valid variable declaration list must not include two declarations with the same
variable name. Moreover, if the declaration has a typing environment that ap-
plies, it must not use a variable name that is already present in that typing envi-
ronment.

An extension of a named tuple for a given variable declaration list is a named tuple
that additionally maps each variable in the list to a value. The value mapped by
each new variable must be in the type that is associated with that variable in the
given list; see The store for the definition of a value being in a type.

15.9 The store
QL programs evaluate in the context of a store. This section specifies several
definitions related to the store.

A fact is a predicate or type along with an ordered tuple. A fact is written as the
predicate name or type name followed immediately by the tuple. Here are some
examples of facts:

successor(0, 1)
Tree.toString(@method_tree(12), "def println")
Location.class(@location(43))
Location.getURL(@location(43), "file:///etc/hosts:2:0:2:12")

A store is a mutable set of facts. The store can be mutated by adding more facts
to it.
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An ordered tuple directly satisfies a predicate or type with a given if there is a fact
in the store with the given tuple and predicate or type.

A value v is in a type t under any of the following conditions:

• The type of v is t and t is a primitive type.

• The tuple (v) directly satisfies t.

An ordered tuple satisfies a predicate p under the following circumstances. If p is
not a member predicate, then the tuple satisfies the predicate whenever it directly
satisfies the predicate.

Otherwise, the tuple must be the tuple of a fact in the store with predicate q,
where q shares a root definition with p. The first element of the tuple must be in
the type before the dot in q, and there must be no other predicate that overrides
q such that this is true (see Classes for details on overriding and root definitions).

An ordered tuple (a0, an) satisfies the + closure of a predicate if there is a se-
quence of binary tuples (a0, a1), (a1, a2), , (an-1, an) that all satisfy the
predicate. An ordered tuple (a, b) satisfies the * closure of a predicate if it ei-
ther satisfies the + closure, or if a and b are the same, and if moreover they are
in each argument type of the predicate.

15.10 Lexical syntax
QL and QLL files contain a sequence of tokens that are encoded as Unicode text.
This section describes the tokenization algorithm, the kinds of available tokens,
and their representation in Unicode.

Some kinds of tokens have an identifier given in parentheses in the section title.
That identifier, if present, is a terminal used in grammar productions later in the
specification. Additionally, the Identifiers section gives several kinds of identifiers,
each of which has its own grammar terminal.
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15.10.1 Tokenization
Source files are interpreted as a sequence of tokens according to the following al-
gorithm. First, the longest-match rule, described below, is applied starting at the
beginning of the file. Second, all whitespace tokens and comments are discarded
from the sequence.

The longest-match rule is applied as follows. The first token in the file is the
longest token consisting of a contiguous sequence of characters at the beginning
of the file. The next token after any other token is the longest token consisting of
contiguous characters that immediately follow any previous token.

If the file cannot be tokenized in its entirety, then the file is invalid.

15.10.2 Whitespace
A whitespace token is a sequence of spaces (U+0020), tabs (U+0009), carriage
returns (U+000D), and line feeds (U+000A).

15.10.3 Comments
There are two kinds of comments in QL: one-line and multiline.

A one-line comment is two slash characters (/, U+002F) followed by any se-
quence of characters other than line feeds (U+000A) and carriage returns
(U+000D). Here is an example of a one-line comment:

// This is a comment

A multiline comment is a comment start, followed by a comment body, followed by
a comment end. A comment start is a slash (/, U+002F) followed by an asterisk
(*, U+002A), and a comment end is an asterisk followed by a slash. A comment
body is any sequence of characters that does not include a comment end. Here
is an example multiline comment:

/*
It was the best of code.

(continues on next page)
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(continued from previous page)

It was the worst of code.
It had a multiline comment.

*/

15.10.4 Keywords
The following sequences of characters are keyword tokens:

and
any
as
asc
avg
boolean
by
class
concat
count
date
desc
else
exists
extends
false
float
forall
forex
from
if
implies
import
in
instanceof
int
max
min

(continues on next page)
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(continued from previous page)

module
none
not
or
order
predicate
rank
result
select
strictconcat
strictcount
strictsum
string
sum
super
then
this
true
where

15.10.5 Operators
The following sequences of characters are operator tokens:

<
<=
=
>
>=
_
-
,
;
!=
/
.

(continues on next page)
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(continued from previous page)

..
(
)
[
]
{
}
*
%
+
|

15.10.6 Identifiers
An identifier is an optional @ sign (U+0040) followed by a sequence of iden-
tifier characters. Identifier characters are lower-case ASCII letters (a through
z, U+0061 through U+007A), upper-case ASCII letters (A through Z, U+0041
through U+005A), decimal digits (0 through 9, U+0030 through U+0039), and
underscores (_, U+005F). The first character of an identifier other than any @
sign must be a letter.

An identifier cannot have the same sequence of characters as a keyword, nor can
it be an @ sign followed by a keyword.

Here are some examples of identifiers:

width
Window_width
window5000_mark_II
@expr

There are several kinds of identifiers:

• lowerId: an identifier that starts with a lower-case letter.

• upperId: an identifier that starts with an upper-case letter.
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• atLowerId: an identifier that starts with an @ sign and then a lower-case
letter.

• atUpperId: an identifier that starts with an @ sign and then an upper-case
letter.

Identifiers are used in following syntactic constructs:

simpleId ::= lowerId | upperId
modulename ::= simpleId
classname ::= upperId
dbasetype ::= atLowerId
predicateRef ::= (moduleId "::")? literalId
predicateName ::= lowerId
varname ::= simpleId
literalId ::= lowerId | atLowerId

15.10.7 Integer literals (int)
An integer literal is a possibly negated sequence of decimal digits (0 through 9,
U+0030 through U+0039). Here are some examples of integer literals:

0
42
123
-2147483648

15.10.8 Float literals (float)
A floating-point literals is a possibly negated two non-negative integers literals
separated by a dot (., U+002E). Here are some examples of float literals:

0.5
2.0
123.456
-100.5
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15.10.9 String literals (string)
A string literal denotes a sequence of characters. It begins and ends with a dou-
ble quote character (U+0022). In between the double quotes are a sequence of
string character indicators, each of which indicates one character that should be
included in the string. The string character indicators are as follows.

• Any character other than a double quote (U+0022), backslash (U+005C),
line feed (U+000A), carriage return (U+000D), or tab (U+0009). Such a
character indicates itself.

• A backslash (U+005C) followed by one of the following characters:

– Another backslash (U+005C), in which case a backslash character is in-
dicated.

– A double quote (U+0022), in which case a double quote is indicated.

– The letter n (U+006E), in which case a line feed (U+000A) is indicated.

– The letter r (U+0072), in which case a carriage return (U+000D) is in-
dicated.

– The letter t (U+0074), in which case a tab (U+0009) is indicated.

Here are some examples of string literals:

"hello"
"He said, \"Logic clearly dictates that the needs of the many...\""

15.11 Annotations
Various kinds of syntax can have annotations applied to them. Annotations are
as follows:

annotations ::= annotation*

annotation ::= simpleAnnotation | argsAnnotation
(continues on next page)
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(continued from previous page)

simpleAnnotation ::= "abstract"
| "cached"
| "external"
| "final"
| "transient"
| "library"
| "private"
| "deprecated"
| "override"
| "query"

argsAnnotation ::= "pragma" "[" ("inline" | "noinline" | "nomagic" |
,→"noopt") "]"

| "language" "[" "monotonicAggregates" "]"
| "bindingset" "[" (variable ( "," variable)*)? "]"

Each simple annotation adds a same-named attribute to the syntactic entity it
precedes. For example, if a class is preceded by the abstract annotation, then
the class is said to be abstract.

A valid annotation list may not include the same simple annotation more than
once, or the same parameterized annotation more than once with the same argu-
ments. However, it may include the same parameterized annotation more than
once with different arguments.

15.11.1 Simple annotations
The following table summarizes the syntactic constructs which can be marked
with each annotation in a valid program; for example, an abstract annotation
preceding a character is invalid.
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Anno-
tation

ClassesChar-
acters

Member
predicates

Non-member
predicates

Im-
ports

Fields Mod-
ules

Aliases

abstractyes yes
cached yes yes yes yes yes
external yes
final yes yes yes
transient yes
library yes
private yes yes yes yes yes yes yes
deprecatedyes yes yes yes yes yes
override yes yes
query yes yes

The library annotation is only usable within a QLL file, not a QL file.

Annotations on aliases apply to the name introduced by the alias. An alias may,
for example, have different privacy to the name it aliases.

15.11.2 Parameterized annotations
Parameterized annotations take some additional arguments.

The parameterized annotation pragma supplies compiler pragmas, and may be
applied in various contexts depending on the pragma in question.

Pragma ClassesChar-
acters

Member
predicates

Non-member
predicates

Im-
ports

Fields Mod-
ules

Aliases

inline yes yes yes
noinline yes yes yes
nomagic yes yes yes
noopt yes yes yes

The parameterized annotation language supplies language pragmas which
change the behavior of the language. Language pragmas apply at the scope level,
and are inherited by nested scopes.
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Pragma ClassesChar-
ac-
ters

Member
predicates

Non-
member
predicates

Im-
ports

Fields Mod-
ules

Aliases

monotonicAggregatesyes yes yes yes yes

A binding set for a predicate is a subset of the predicates arguments such that if
those arguments are bound (restricted to a finite range of values), then all of the
predicates arguments are bound.

The parameterized annotation bindingset can be applied to a predicate (see
Non-member predicates and Members) to specify a binding set.

This annotation accepts a (possibly empty) list of variable names as parameters.
The named variables must all be arguments of the predicate, possibly including
this for characteristic predicates and member predicates, and result for predi-
cates that yield a result.

In the default case where no binding sets are specified by the user, then it is
assumed that there is precisely one, empty binding set - that is, the body of the
predicate must bind all the arguments.

Binding sets are checked by the QL compiler in the following way:

1. It assumes that all variables mentioned in the binding set are bound.

2. It checks that, under this assumption, all the remaining argument variables
are bound by the predicate body.

A predicate may have several different binding sets, which can be stated by using
multiple bindingset annotations on the same predicate.

Pragma ClassesChar-
acters

Member
predicates

Non-member
predicates

Im-
ports

Fields Mod-
ules

Aliases

bindingset yes yes yes
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15.12 Top-level entities
Modules include five kinds of top-level entity: predicates, classes, modules,
aliases, and select clauses.

15.12.1 Non-member predicates
A predicate is declared as a sequence of annotations, a head, and an optional
body:

predicate ::= annotations head optbody

A predicate definition adds a mapping from the predicate name and arity to the
predicate declaration to the current modules declared predicate environment.

When a predicate is a top-level clause in a module, it is called a non-member
predicate. See below for member predicates.

A valid non-member predicate can be annotated with cached, deprecated,
external, transient, private, and query. Note, the transient annotation
can only be applied if the non-member predicate is also annotated with external.

The head of the predicate gives a name, an optional result type, and a sequence
of variables declarations that are arguments:

head ::= ("predicate" | type) predicateName "(" (var_decls)? ")"

The body of a predicate is of one of three forms:

optbody ::= ";"
| "{" formula "}"
| "=" literalId "(" (predicateRef "/" int ("," predicateRef "/

,→" int)*)? ")" "(" (exprs)? ")"

In the first form, with just a semicolon, the predicate is said to not have a body.
In the second form, the body of the predicate is the given formula (see Formulas).
In the third form, the body is a higher-order relation.
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A valid non-member predicate must have a body, either a formula or a higher-
order relation, unless it is external, in which case it must not have a body.

The typing environment for the body of the formula, if present, maps the variables
in the head of the predicate to their associated types. If the predicate has a result
type, then the typing environment also maps result to the result type.

15.12.2 Classes
A class definition has the following syntax:

class ::= annotations "class" classname "extends" type ("," type)* "{"␣
,→member* "}"

The identifier following the class keyword is the name of the class.

The types specified after the extends keyword are the base types of the class.

A class domain type is said to inherit from the base types of the associated class
type, a character type is said to inherit from its associated class domain type
and a class type is said to inherit from its associated character type. In addition,
inheritance is transitive: If a type A inherits from a type B, and B inherits from a
type C, then A inherits from C.

A class adds a mapping from the class name to the class declaration to the current
modules declared type environment.

A valid class can be annotated with abstract, final, library, and private.
Any other annotation renders the class invalid.

A valid class may not inherit from a final class, from itself, or from more than one
primitive type.

15.12.3 Class environments
For each of modules, types, predicates, and fields a class inherits, declares, and
exports an environment. These are defined as follows (with X denoting the type
of entity we are currently considering):
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• The inherited X environment of a class is the union of the exported X environ-
ments of its base types.

• The declared X environment of a class is the multimap of X declarations in the
class itself.

• The exported X environment of a class is the overriding union of its declared
X environment (excluding private declaration entries) with its inherited X
environment.

• The external X environment of a class is the visible X environment of the en-
closing module.

• The visible X environment is the overriding union of the declared X environ-
ment and the inherited X environment; overriding unioned with the external
X environment.

The program is invalid if any of these environments is not definite.

15.12.4 Members
Each member of a class is either a character, a predicate, or a field:

member ::= character | predicate | field
character ::= annotations classname "(" ")" "{" formula "}"
field ::= annotations var_decl ";"

Characters

A valid character must have the same name as the name of the class. A valid class
has at most one character provided in the source code.

A valid character can be annotated with cached. Any other annotation renders
the character invalid.

Member predicates

A predicate that is a member of a class is called a member predicate. The name of
the predicate is the identifier just before the open parenthesis.
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A member predicate adds a mapping from the predicate name and arity to the
predicate declaration in the classs declared predicate environment.

A valid member predicate can be annotated with abstract, cached, final,
private, deprecated, and override.

If a type is provided before the name of the member predicate, then that type is
the result type of the predicate. Otherwise, the predicate has no result type. The
types of the variables in the var_decls are called the predicates argument types.

A member predicate p with enclosing class C overrides a member predicate p'
with enclosing class D when C inherits from D, p' is visible in C, and both p and
p' have the same name and the same arity. An overriding predicate must have the
same sequence of argument types as any predicates which it overrides, otherwise
the program is invalid.

Member predicates have one or more root definitions. If a member predicate
overrides no other member predicate, then it is its own root definition. Otherwise,
its root definitions are those of any member predicate that it overrides.

A valid member predicate must have a body unless it is abstract or external, in
which case it must not have a body.

A valid member predicate must override another member predicate if it is anno-
tated override.

When member predicate p overrides member predicate q, either p and q must
both have a result type, or neither of them may have a result type. If they do
have result types, then the result type of p must be a subtype of the result type of
q. q may not be a final predicate. If p is abstract, then q must be as well.

A class may not inherit from a class with an abstract member predicate unless
it either includes a member predicate overriding that abstract predicate, or it
inherits from another class that does.

A valid class must include a non-private predicate named toString with no ar-
guments and a result type of string, or it must inherit from a class that does.

A valid class may not inherit from two different classes that include a predicate
with the same name and number of arguments, unless either one of the predicates
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overrides the other, or the class defines a predicate that overrides both of them.

The typing environment for a member predicate or character is the same as if it
were a non-member predicate, except that it additionally maps this to a type. If
the member is a character, then the typing environment maps this to the class
domain type of the class. Otherwise, it maps this to the class type of the class
itself.

Fields

A field declaration introduces a mapping from the field name to the field decla-
ration in the classs declared field environment.

15.12.5 Select clauses
A QL file may include at most one select clause. That select clause has the following
syntax:

select ::= ("from" var_decls)? ("where" formula)? "select" select_
,→exprs ("order" "by" orderbys)?

A valid QLL file may not include any select clauses.

A select clause is considered to be a declaration of an anonymous predicate whose
arguments correspond to the select expressions of the select clause.

The from keyword, if present, is followed by the variables of the formula. Other-
wise, the select clause has no variables.

The where keyword, if present, is followed by the formula of the select clause.
Otherwise, the select clause has no formula.

The select keyword is followed by a number of select expressions. Select expres-
sions have the following syntax:

as_exprs ::= as_expr ("," as_expr)*
as_expr ::= expr ("as" simpleId)?
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The keyword as gives a label to the select expression it is part of. No two select
expressions may have the same label. No expression label may be the same as
one of the variables of the select clause.

The order keyword, if present, is followed by a number of ordering directives.
Ordering directives have the following syntax:

orderbys ::= orderby ("," orderby)*
orderby ::= simpleId ("asc" | "desc")?

Each identifier in an ordering directive must identify exactly one of the select
expressions. It must either be the label of the expression, or it must be a variable
expression that is equivalent to exactly one of the select expressions. The type of
the designated select expression must be a subtype of a primitive type.

No select expression may be specified by more than one ordering directive. See
Ordering for more information.

15.12.6 Queries
The queries in a QL module are:

• The select clause, if any, defined in that module.

• Any predicates annotated with query which are in scope in that module.

The target predicate of the query is either the select clause or the annotated pred-
icate.

Each argument of the target predicate of the query must be of a type which has
a toString() member predicate.

15.13 Expressions
Expressions are a form of syntax used to denote values. Every expression has
a typing environment that is determined by the context where the expression
occurs. Every valid expression has a type, as specified in this section, except if it
is a dont-care expression.
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Given a named tuple and a store, each expression has one or more values. This
section specifies the values of each kind of expression.

There are several kinds of expressions:

exprs ::= expr ("," expr)*

expr ::= dontcare
| unop
| binop
| cast
| primary

primary ::= eparen
| literal
| variable
| super_expr
| callwithresult
| postfix_cast
| aggregation
| any

15.13.1 Parenthesized expressions
A parenthesized expression is an expression surrounded by parentheses:

eparen ::= "(" expr ")"

The type environment of the nested expression is the same as that of the outer
expression. The type and values of the outer expression are the same as those of
the nested expression.

15.13.2 Dont-care expressions
A dont-care expression is written as a single underscore:
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dontcare ::= "_"

All values are values of a dont-care expression.

15.13.3 Literals
A literal expression is as follows:

literal ::= "false" | "true" | int | float | string

The type of a literal expression is the type of the value denoted by the literal:
boolean for false or true, int for an integer literal, float for a floating-point
literal, or string for a string literal. The value of a literal expression is the same
as the value denoted by the literal.

15.13.4 Unary operations
A unary operation is the application of + or - to another expression:

unop ::= "+" expr
| "-" expr

The + or - in the operation is called the operator, and the expression is called
the operand. The typing environment of the operand is the same as for the unary
operation.

For a valid unary operation, the operand must be of type int or float. The
operation has the same type as its operand.

If the operator is +, then the values of the expression are the same as the values
of the operand. If the operator is -, then the values of the expression are the
arithmetic negations of the values of the operand.

15.13.5 Binary operations
A binary operation is written as a left operand followed by a binary operator,
followed by a right operand:
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binop ::= expr "+" expr
| expr "-" expr
| expr "*" expr
| expr "/" expr
| expr "%" expr

The typing environment for the two environments is the same as for the operation.
If the operator is +, then either both operands must be subtypes of int or float,
or at least one operand must be a subtype of string. If the operator is anything
else, then each operand must be a subtype of int or float.

The type of the operation is string if either operand is a subtype of string.
Otherwise, the type of the operation is int if both operands are subtypes of int.
Otherwise, the type of the operation is float.

If the result is of type string, then the left values of the operation are the values
of a call with results expression with the left operand as the receiver, toString
as the predicate name, and no arguments (see Calls with results). Otherwise the
left values are the values of the left operand. Likewise, the right values are either
the values from calling toString on the right operand, or the values of the right
operand as it is.

The binary operation has one value for each combination of a left value and a
right value. That value is determined as follows:

• If the left and right operand types are subtypes of string, then the operation
has a value that is the concatenation of the left and right values.

• Otherwise, if both operand types are subtypes of int, then the value of the
operation is the result of applying the twos-complement 32-bit integer oper-
ation corresponding to the QL binary operator.

• Otherwise, both operand types must be subtypes of float. If either operand
is of type int then they are converted to a float. The value of the opera-
tion is then the result of applying the IEEE 754 floating-point operator that
corresponds to the QL binary operator: addition for +, subtraction for -, mul-
tiplication for *, division for /, or remainder for %.
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15.13.6 Variables
A variable has the following syntax:

variable ::= varname | "this" | "result"

A valid variable expression must occur in the typing environment. The type of
the variable expression is the same as the type of the variable in the typing envi-
ronment.

The value of the variable is the value of the variable in the named tuple.

15.13.7 Super
A super expression has the following syntax:

super_expr ::= "super" | type "." "super"

For a super expression to be valid, the this keyword must have a type and value
in the typing environment. The type of the expression is the same as the type of
this in the typing environment.

A super expression may only occur in a QL program as the receiver expression
for a predicate call.

If a super expression includes a type, then that type must be a class that the
enclosing class inherits from.

If the super expression does not include a type, then the enclosing class must
have a single declared base type, and that base type must be a class.

The value of a super expression is the same as the value of this in the named
tuple.

15.13.8 Casts
A cast expression is a type in parentheses followed by another expression:
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cast ::= "(" type ")" expr

The typing environment for the nested expression is the same as for the cast
expression. The type of the cast expression is the type between parentheses.

The values of the cast expression are those values of the nested expression that
are in the type given within parentheses.

For casts between the primitive float and int types, the above rule means that
for the cast expression to have a value, it must be representable as both 32-bit
twos complement integers and 64-bit IEEE 754 floats. Other values will not be
included in the values of the cast expression.

15.13.9 Postfix casts
A postfix cast is a primary expression followed by a dot and then a class or prim-
itive type in parentheses:

postfix_cast ::= primary "." "(" type ")"

All the rules for ordinary casts apply to postfix casts: a postfix cast is exactly
equivalent to a parenthesized ordinary cast.

15.13.10 Calls with results
An expression for a call with results is of one of two forms:

callwithresult ::= predicateRef (closure)? "(" (exprs)? ")"
| primary "." predicateName (closure)? "(" (exprs)? ")

,→"
closure ::= "*" | "+"

The expressions in parentheses are the arguments of the call. The expression
before the dot, if there is one, is the receiver of the call.

The type environment for the arguments is the same as for the call.
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A valid call with results must resolve to exactly one predicate. The ways a call can
resolve are as follows:

• If the call has no receiver, then it can resolve to a non-member predicate.
If the predicate name is a simple identifier, then the predicate is resolved
by looking up its name and arity in the visible predicate environment of the
enclosing class or module.

If the predicate name is a selection identifier, then the qualifier is resolved
as a module (see Module resolution). The identifier is then resolved in the
exported predicate environment of the qualifier module.

• If the call has a super expression as the receiver, then it resolves to a member
predicate in a class the enclosing class inherits from. If the super expression
is unqualified, then the super-class is the single class that the current class
inherits from. If there is not exactly one such class, then the program is
invalid. Otherwise the super-class is the class named by the qualifier of the
super expression. The predicate is resolved by looking up its name and arity
in the exported predicate environment of the super-class. If there is more
than one such predicate, then the predicate call is not valid.

For each argument other than a dont-care expression, the type of the argument
must be compatible with the type of the corresponding argument type of the
predicate, otherwise the call is invalid.

A valid call with results must resolve to a predicate that has a result type. That
result type is also the type of the call.

If the resolved predicate is built in, then the call may not include a closure. If the
call does have a closure, then it must resolve to a predicate where the relational
arity of the predicate is 2. The relational arity of a predicate is the sum of the
following numbers:

• The number of arguments to the predicate.

• The number 1 if the predicate is a member predicate, otherwise 0.

• The number 1 if the predicate has a result, otherwise 0.

If the call resolves to a member predicate, then the receiver values are as follows.
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If the call has a receiver, then the receiver values are the values of that receiver.
If the call does not have a receiver, then the single receiver value is the value of
this in the contextual named tuple.

The tuple prefixes of a call with results include one value from each of the argu-
ment expressions values, in the same order as the order of the arguments. If the
call resolves to a non-member predicate, then those values are exactly the tuple
prefixes of the call. If the call instead resolves to a member predicate, then the
tuple prefixes additionally include a receiver value, ordered before the argument
values.

The matching tuples of a call with results are all ordered tuples that are one of
the tuple prefixes followed by any value of the same type as the call. If the call
has no closure, then all matching tuples must additionally satisfy the resolved
predicate of the call, unless the receiver is a super expression, in which case they
must directly satisfy the resolved predicate of the call. If the call has a * or +
closure, then the matching tuples must satisfy or directly satisfy the associated
closure of the resolved predicate.

The values of a call with results are the final elements of each of the calls matching
tuples.

15.13.11 Aggregations
An aggregation can be written in one of two forms:

aggregation ::= aggid ("[" expr "]")? "(" (var_decls)? ("|" (formula)?␣
,→("|" as_exprs ("order" "by" aggorderbys)?)?)? ")"

| aggid ("[" expr "]")? "(" as_exprs ("order" "by"␣
,→aggorderbys)? ")"

| "unique" "(" var_decls "|" (formula)? ("|" as_exprs)?
,→")"

aggid ::= "avg" | "concat" | "count" | "max" | "min" | "rank" |
,→"strictconcat" | "strictcount" | "strictsum" | "sum"

aggorderbys ::= aggorderby ("," aggorderby)*
(continues on next page)
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(continued from previous page)

aggorderby ::= expr ("asc" | "desc")?

The expression enclosed in square brackets ([ and ], U+005B and U+005D),
if present, is called the rank expression. It must have type int in the enclosing
environment.

The as_exprs, if present, are called the aggregation expressions. If an aggregation
expression is of the form expr as v then the expression is said to be named v.

The rank expression must be present if the aggregate id is rank; otherwise it must
not be present.

Apart from the presence or absence of the rank variable, all other reduced forms
of an aggregation are equivalent to a full form using the following steps:

• If the formula is omitted, then it is taken to be any().

• If there are no aggregation expressions, then either:

– The aggregation id is count or strictcount and the expression is taken
to be 1.

– There must be precisely one variable declaration, and the aggregation
expression is taken to be a reference to that variable.

• If the aggregation id is concat or strictconcat and it has a single expres-
sion then the second expression is taken to be "".

• If the monotonicAggregates language pragma is not enabled, or the original
formula and variable declarations are both omitted, then the aggregate is
transformed as follows:

– For each aggregation expression expr_i, a fresh variable v_i is declared
with the same type as the expression in addition to the original variable
declarations.

– The new range is the conjunction of the original range and a term v_i =
expr_i for each aggregation expression expr_i.
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– Each original aggregation expression expr_i is replaced by a new aggre-
gation expression v_i.

The variables in the variable declarations list must not occur in the typing envi-
ronment.

The typing environment for the rank expression is the same as for the aggregation.

The typing environment for the formula is obtained by taking the typing environ-
ment for the aggregation and adding all the variable types in the given var_decls
list.

The typing environment for an aggregation expression is obtained by taking the
typing environment for the formula and then, for each named aggregation ex-
pression that occurs earlier than the current expression, adding a mapping from
the earlier expressions name to the earlier expressions type.

The typing environment for ordering directives is obtained by taking the typing
environment for the formula and then, for each named aggregation expression in
the aggregation, adding a mapping from the expressions name to the expressions
type.

The number and types of the aggregation expressions are restricted as follows:

• A max, min, rank or unique aggregation must have a single expression.

• The type of the expression in a max, min or rank aggregation without an
ordering directive expression must be an orderable type.

• A count or strictcount aggregation must not have an expression.

• A sum, strictsum or avg aggregation must have a single aggregation expres-
sion, which must have a type which is a subtype of float.

• A concat or strictconcat aggregation must have two expressions. Both
expressions must have types which are subtypes of string.

The type of a count, strictcount aggregation is int. The type of an avg aggre-
gation is float. The type of a concat or strictconcat aggregation is string.
The type of a sum or strictsum aggregation is int if the aggregation expres-
sion is a subtype of int, otherwise it is float. The type of a rank, min or max
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aggregation is the type of the single expression.

An ordering directive may only be specified for a max, min, rank, concat or
strictconcat aggregation. The type of the expression in an ordering directive
must be an orderable type.

The values of the aggregation expression are determined as follows. Firstly, the
range tuples are extensions of the named tuple that the aggregation is being eval-
uated in with the variable declarations of the aggregation, and which match the
formula (see Formulas).

For each range tuple, the aggregation tuples are the extension of the range tuples
to aggregation variables and sort variables.

The aggregation variables are given by the aggregation expressions. If an aggre-
gation expression is named, then its aggregation variable is given by its name,
otherwise a fresh synthetic variable is created. The value is given by evaluating
the expression with the named tuple being the result of the previous expression,
or the range tuple if this is the first aggregation expression.

The sort variables are synthetic variables created for each expression in the or-
dering directive with values given by the values of the expressions within the
ordering directive.

If the aggregation id is max, min or rank and there was no ordering directive, then
for each aggregation tuple a synthetic sort variable is added with value given by
the aggregation variable.

The values of the aggregation expression are given by applying the aggregation
function to each set of tuples obtained by picking exactly one aggregation tuple
for each range tuple.

• If the aggregation id is avg, and the set is non-empty, then the resulting value
is the average of the value for the aggregation variable in each tuple in the
set, weighted by the number of tuples in the set, after converting the value
to a floating-point number.

• If the aggregation id is count, then the resulting value is the number of tuples
in the set. If there are no tuples in the set, then the value is the integer 0.
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• If the aggregation id is max, then the values are the those values of the ag-
gregation variable which are associated with a maximal tuple of sort values.
If the set is empty, then the aggregation has no value.

• If the aggregation id is min, then the values are the those values of the ag-
gregation variable which are associated with a minimal tuple of sort values.
If the set is empty, then the aggregation has no value.

• If the aggregation id is rank, then the resulting values are values of the ag-
gregation variable such that the number of aggregation tuples with a strictly
smaller tuple of sort variables is exactly one less than an integer bound by
the rank expression of the aggregation. If no such values exist, then the ag-
gregation has no values.

• If the aggregation id is strictcount, then the resulting value is the same as
if the aggregation id were count, unless the set of tuples is empty. If the set
of tuples is empty, then the aggregation has no value.

• If the aggregation id is strictsum, then the resulting value is the same as if
the aggregation id were sum, unless the set of tuples is empty. If the set of
tuples is empty, then the aggregation has no value.

• If the aggregation id is sum, then the resulting value is the same as the sum of
the values of the aggregation variable across the tuples in the set, weighted
by the number of times each value occurs in the tuples in the set. If there are
no tuples in the set, then the resulting value of the aggregation is the integer
0.

• If the aggregation id is concat, then there is one value for each value of the
second aggregation variable, given by the concatenation of the value of the
first aggregation variable of each tuple with the value of the second aggrega-
tion variable used as a separator, ordered by the sort variables. If there are
multiple aggregation tuples with the same sort variables then the first distin-
guished value is used to break ties. If there are no tuples in the set, then the
single value of the aggregation is the empty string.

• If the aggregation id is strictconcat, then the result is the same as for
concat except in the case where there are no aggregation tuples in which
case the aggregation has no value.
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• If the aggregation id is unique, then the result is the value of the aggregation
variable if there is precisely one such value. Otherwise, the aggregation has
no value.

15.13.12 Any
The any expression is a special kind of quantified expression.

any ::= "any" "(" var_decls ("|" (formula)? ("|" expr)?)? ")"

The values of an any expression are those values of the expression for which the
formula matches.

The abbreviated cases for an any expression are interpreted in the same way as
for an aggregation.

15.13.13 Ranges
Range expressions denote a range of values.

range ::= "[" expr ".." expr "]"

Both expressions must be subtypes of int, float, or date. If either of them are
type date, then both of them must be.

If both expressions are subtypes of int then the type of the range is int. If both
expressions are subtypes of date then the type of the range is date. Otherwise
the type of the range is float.

The values of a range expression are those values which are ordered inclusively
between a value of the first expression and a value of the second expression.

15.13.14 Set literals
Set literals denote a choice from a collection of values.

setliteral ::= "[" expr ("," expr)* "]"
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Set literals can be of any type, but the types within a set literal have to be con-
sistent according to the following criterion: At least one of the set elements has
to be of a type that is a supertype of all the set element types. This supertype is
the type of the set literal. For example, float is a supertype of float and int,
therefore x = [4, 5.6] is valid. On the other hand, y = [5, "test"] does not
adhere to the criterion.

The values of a set literal expression are all the values of all the contained element
expressions.

Set literals are supported from release 2.1.0 of the CodeQL CLI, and release 1.24
of LGTM Enterprise.

15.14 Disambiguation of expressions
The grammar given in this section is disambiguated first by precedence, and sec-
ond by associating left to right. The order of precedence from highest to lowest
is:

• casts

• unary + and -

• binary * , / and %

• binary + and -

Additionally, whenever a sequence of tokens can be interpreted either as a call
to a predicate with result (with specified closure), or as a binary operation with
operator + or *, the syntax is interpreted as a call to a predicate with result.

15.15 Formulas
A formula is a form of syntax used to match a named tuple given a store.

There are several kinds of formulas:

150 Chapter 15. QL language specification



QL language reference, Release 1.24

formula ::= fparen
| disjunction
| conjunction
| implies
| ifthen
| negated
| quantified
| comparison
| instanceof
| inrange
| call

This section specifies the syntax for each kind of formula and what tuples they
match.

15.15.1 Parenthesized formulas
A parenthesized formula is a formula enclosed by a pair of parentheses:

fparen ::= "(" formula ")"

A parenthesized formula matches the same tuples as the nested formula matches.

15.15.2 Disjunctions
A disjunction is two formulas separated by the or keyword:

disjunction ::= formula "or" formula

A disjunction matches any tuple that matches either of the nested formulas.

15.15.3 Conjunctions
A conjunction is two formulas separated by the and keyword:
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conjunction ::= formula "and" formula

A conjunction matches any tuple that also matches both of the two nested formu-
las.

15.15.4 Implications
An implication formula is two formulas separated by the implies keyword:

implies ::= formula "implies" formula

Neither of the two formulas may be another implication.

An implied formula matches if either the second formula matches, or the first
formula does not match.

15.15.5 Conditional formulas
A conditional formula has the following syntax:

ifthen ::= "if" formula "then" formula "else" formula

The first formula is called the condition of the conditional formula. The second
formula is called the true branch, and the second formula is called the false branch.

The conditional formula matches if the condition and the true branch both match.
It also matches if the false branch matches and the condition does not match.

15.15.6 Negations
A negation formula is a formula preceded by the not keyword:

negated ::= "not" formula

A negation formula matches any tuple that does not match the nested formula.
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15.15.7 Quantified formulas
A quantified formula has several syntaxes:

quantified ::= "exists" "(" expr ")"
| "exists" "(" var_decls ("|" formula)? ("|" formula)? ")"
| "forall" "(" var_decls ("|" formula)? "|" formula ")"
| "forex" "(" var_decls ("|" formula)? "|" formula ")"

In all cases, the typing environment for the nested expressions or formulas is the
same as the typing environment for the quantified formula, except that it also
maps the variables in the variable declaration to their associated types.

The first form matches if the given expression has at least one value.

For the other forms, the extensions of the current named tuple for the given vari-
able declarations are called the quantifier extensions. The nested formulas are
called the first quantified formula and, if present, the second quantified formula.

The second exists formula matches if one of the quantifier extensions is such
that the quantified formula or formulas all match.

A forall formula that has one quantified formula matches if that quantified for-
mula matches all of the quantifier extensions. A forall with two quantified
formulas matches if the second formula matches all extensions where the first
formula matches.

A forex formula with one quantified formula matches under the same conditions
as a forall formula matching, except that there must be at least one quantifier
extension where that first quantified formula matches.

15.15.8 Comparisons
A comparison formula is two expressions separated by a comparison operator:

comparison ::= expr compop expr
compop ::= "=" | "!=" | "<" | ">" | "<=" | ">="

A comparison formula matches if there is one value of the left expression that is

15.15. Formulas 153



QL language reference, Release 1.24

in the given ordering with one of the values of the right expression. The ordering
used is specified in Ordering. If one of the values is an integer and the other is a
float value, then the integer is converted to a float value before the comparison.

If the operator is =, then at least one of the left and right expressions must have
a type; if they both have a type, those types must be compatible.

If the operator is !=, then both expressions must have a type, and those types
must be compatible.

If the operator is any other operator, then both expressions must have a type.
Those types must be compatible with each other. Each of those types must be
orderable.

15.15.9 Type checks
A type check formula has the following syntax:

instanceof ::= expr "instanceof" type

The type to the right of instanceof is called the type-check type.

The type of the expression must be compatible with the type-check type.

The formula matches if one of the values of the expression is in the type-check
type.

15.15.10 Range checks
A range check has the following syntax:

inrange ::= expr "in" range

The formula is equivalent to expr "=" range.

15.15.11 Calls
A call has the following syntax:

154 Chapter 15. QL language specification



QL language reference, Release 1.24

call ::= predicateRef (closure)? "(" (exprs)? ")"
| primary "." predicateName (closure)? "(" (exprs)? ")"

The identifier is called the predicate name of the call.

A call must resolve to a predicate, using the same definition of resolve as for calls
with results (see Calls with results).

The resolved predicate must not have a result type.

If the resolved predicate is a built-in member predicate of a primitive type, then
the call may not include a closure. If the call does have a closure, then the call
must resolve to a predicate with relational arity of 2.

The candidate tuples of a call are the ordered tuples formed by selecting a value
from each of the arguments of the call.

If the call has no closure, then it matches whenever one of the candidate tuples
satisfies the resolved predicate of the call, unless the call has a super expression
as a receiver, in which case the candidate tuple must directly satisfy the resolved
predicate. If the call has * or + closure, then the call matches whenever one
of the candidate tuples satisfies or directly satisfies the associated closure of the
resolved predicate.

15.15.12 Disambiguation of formulas
The grammar given in this section is disambiguated first by precedence, and sec-
ond by associating left to right, except for implication which is non-associative.
The order of precedence from highest to lowest is:

• Negation

• Conditional formulas

• Conjunction

• Disjunction

• Implication
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15.16 Aliases
Aliases define new names for existing QL entities.

alias ::= annotations "predicate" literalId "=" predicateRef "/" int ";
,→"

| annotations "class" classname "=" type ";"
| annotations "module" modulename "=" moduleId ";"

An alias introduces a binding from the new name to the entity referred to by
the right-hand side in the current modules declared predicate, type, or module
environment respectively.

15.17 Built-ins
A QL database includes a number of built-in predicates . This section defines
a number of built-in predicates that all databases include. Each database also
includes a number of additional non-member predicates that are not specified in
this document.

This section gives several tables of built-in predicates. For each predicate, the
table gives the result type of each predicate that has one, and the sequence of
argument types.

Each table also specifies which ordered tuples are in the database content of each
predicate. It specifies this with a description that holds true for exactly the tu-
ples that are included. In each description, the result is the last element of each
tuple, if the predicate has a result type. The receiver is the first element of each
tuple. The arguments are all elements of each tuple other than the result and the
receiver.

15.17.1 Non-member built-ins
The following built-in predicates are non-member predicates:
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NameRe-
sult
type

Argu-
ment
types

Content

any The empty tuple.
none No tuples.
toUrl string,

int, int,
int, int,
string

Let the arguments be file, startLine, startCol,
endLine, endCol, and url. The predicate
holds if url is equal to the string file://
file:startLine:startCol:endLine:endCol.

15.17.2 Built-ins for boolean
The following built-in predicates are members of type boolean:

Name Result
type

Argument
types

Content

booleanAndboolean boolean The result is the boolean and of the receiver
and the argument.

booleanNotboolean The result is the boolean not of the receiver.
booleanOrboolean boolean The result is the boolean or of the receiver and

the argument.
booleanXorboolean boolean The result is the boolean exclusive or of the re-

ceiver and the argument.
toString string The result is true if the receiver is true, other-

wise false.

15.17.3 Built-ins for date
The following built-in predicates are members of type date:
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NameRe-
sult
type

Ar-
gu-
ment
types

Content

daysToint date The result is the number of days between but not including
the receiver and the argument.

getDayint The result is the day component of the receiver.
getHoursint The result is the hours component of the receiver.
getMinutesint The result is the minutes component of the receiver.
getMonthstring The result is a string that is determined by the month compo-

nent of the receiver. The string is one of January, February,
March, April, May, June, July, August, September,
October, November, or December.

getSecondsint The result is the seconds component of the receiver.
getYearint The result is the year component of the receiver.
toISOstring The result is a string representation of the date. The repre-

sentation is left unspecified.
toStringstring The result is a string representation of the date. The repre-

sentation is left unspecified.

15.17.4 Built-ins for float
The following built-in predicates are members of type float:

Name Result type Argument types Content
abs float The result is the absolute value of the receiver.
acos float The result is the inverse cosine of the receiver.
asin float The result is the inverse sine of the receiver.
atan float The result is the inverse tangent of the receiver.
ceil int The result is the smallest integer greater than or equal to the receiver.
copySign float float The result is the floating point number with the magnitude of the receiver and the sign of the argument.
cos float The result is the cosine of the receiver.

Continued on next page
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Table 1 – continued from previous page
Name Result type Argument types Content
cosh float The result is the hyperbolic cosine of the receiver.
exp float The result is the value of e, the base of the natural logarithm, raised to the power of the receiver.
floor int The result is the largest integer that is not greater than the receiver.
log float The result is the natural logarithm of the receiver.
log float float The result is the logarithm of the receiver with the base of the argument.
log float int The result is the logarithm of the receiver with the base of the argument.
log10 float The result is the base-10 logarithm of the receiver.
log2 float The result is the base-2 logarithm of the receiver.
maximum float float The result is the larger of the receiver and the argument.
maximum float int The result is the larger of the receiver and the argument.
minimum float float The result is the smaller of the receiver and the argument.
minimum float int The result is the smaller of the receiver and the argument.
nextAfter float float The result is the number adjacent to the receiver in the direction of the argument.
nextDown float The result is the number adjacent to the receiver in the direction of negative infinity.
nextUp float The result is the number adjacent to the receiver in the direction of positive infinity.
pow float float The result is the receiver raised to the power of the argument.
pow float int The result is the receiver raised to the power of the argument.
signum float The result is the sign of the receiver: zero if it is zero, 1.0 if it is greater than zero, -1.0 if it is less than zero.
sin float The result is the sine of the receiver.
sinh float The result is the hyperbolic sine of the receiver.
sqrt float The result is the square root of the receiver.
tan float The result is the tangent of the receiver.
tanh float The result is the hyperbolic tangent of the receiver.
toString string The decimal representation of the number as a string.
ulp float The result is the ULP (unit in last place) of the receiver.

15.17.5 Built-ins for int
The following built-in predicates are members of type int:
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Name Result type Argument types Content
abs int The result is the absolute value of the receiver.
acos float The result is the inverse cosine of the receiver.
asin float The result is the inverse sine of the receiver.
atan float The result is the inverse tangent of the receiver.
cos float The result is the cosine of the receiver.
cosh float The result is the hyperbolic cosine of the receiver.
exp float The result is the value of value of e, the base of the natural logarithm, raised to the power of the receiver.
gcd int int The result is the greatest common divisor of the receiver and the argument.
log float The result is the natural logarithm of the receiver.
log float float The result is the logarithm of the receiver with the base of the argument.
log float int The result is the logarithm of the receiver with the base of the argument.
log10 float The result is the base-10 logarithm of the receiver.
log2 float The result is the base-2 logarithm of the receiver.
maximum float float The result is the larger of the receiver and the argument.
maximum int int The result is the larger of the receiver and the argument.
minimum float float The result is the smaller of the receiver and the argument.
minimum int int The result is the smaller of the receiver and the argument.
pow float float The result is the receiver raised to the power of the argument.
pow float int The result is the receiver raised to the power of the argument.
sin float The result is the sine of the receiver.
sinh float The result is the hyperbolic sine of the receiver.
sqrt float The result is the square root of the receiver.
tan float The result is the tangent of the receiver.
tanh float The result is the hyperbolic tangent of the receiver.
bitAnd int int The result is the bitwise and of the receiver and the argument.
bitOr int int The result is the bitwise or of the receiver and the argument.
bitXor int int The result is the bitwise xor of the receiver and the argument.
bitNot int The result is the bitwise complement of the receiver.
bitShiftLeft int int The result is the bitwise left shift of the receiver by the argument, modulo 32.
bitShiftRight int int The result is the bitwise right shift of the receiver by the argument, modulo 32.
bitShiftRightSigned int int The result is the signed bitwise right shift of the receiver by the argument, modulo 32.
toString string The result is the decimal representation of the number as a string.
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The leftmost bit after bitShiftRightSigned depends on sign extension, whereas
after bitShiftRight it is zero.

15.17.6 Built-ins for string
The following built-in predicates are members of type string:
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NameRe-
sult
type

Ar-
gu-
ment
types

Content

charAtstring int The result is a 1-character string containing the character in
the receiver at the index given by the argument. The first
element of the string is at index 0.

indexOfint stringThe result is an index into the receiver where the argument
occurs.

indexOfint string,
int,
int

Let the arguments be s, n, and start. The result is the index
of occurrence n of substring s in the receiver that is no
earlier in the string than start.

isLowercase The receiver contains no upper-case letters.
isUppercase The receiver contains no lower-case letters.
lengthint The result is the number of characters in the receiver.
matches stringThe argument is a pattern that matches the receiver, in the

same way as the LIKE operator in SQL. Patterns may include
_ to match a single character and % to match any sequence of
characters. A backslash can be used to escape an underscore,
a percent, or a backslash. Otherwise, all characters in the
pattern other than _ and % and \\ must match exactly.

prefixstring int The result is the prefix of the receiver that has a length ex-
actly equal to the argument. If the argument is negative or
greater than the receivers length, then there is no result.

regexpCapturestringstring,
int

The receiver exactly matches the regex in the first argument,
and the result is the group of the match numbered by the
second argument.

regexpFindstringstring,
int,
int

The receiver contains one or more occurrences of the regex
in the first argument. The result is the substring which
matches the regex, the second argument is the occurrence
number, and the third argument is the index within the re-
ceiver at which the occurrence begins.

regexpMatchstringThe receiver matches the argument as a regex.
regexpReplaceAllstringstring,

string
The result is obtained by replacing all occurrences in the re-
ceiver of the first argument as a regex by the second argu-
ment.

replaceAllstringstring,
string

The result is obtained by replacing all occurrences in the re-
ceiver of the first argument by the second.

splitAtstringstringThe result is one of the strings obtained by splitting the re-
ceiver at every occurrence of the argument.

splitAtstringstring,
int

Let the arguments be delim and i. The result is field num-
ber i of the fields obtained by splitting the receiver at every
occurrence of delim.

substringstring int,
int

The result is the substring of the receiver starting at the
index of the first argument and ending just before the index
of the second argument.

suffixstring int The result is the suffix of the receiver that has a length exactly
equal to the receivers length minus the argument. If the ar-
gument is negative or greater than the receivers length, then
there is no result. As a result, the identity s.prefix(i)+s.
suffix(i)=s holds for i in [0, s.length()].

toDatedate The result is a date value determined by the receiver. The
format of the receiver is unspecified, except that if (d, s) is
in date.toString, (s, d) is in string.toDate.

toFloatfloat The result is the float whose value is represented by the re-
ceiver. If the receiver cannot be parsed as a float then there
is no result.

toIntint The result is the integer whose value is represented by the
receiver. If the receiver cannot be parsed as an integer or
cannot be represented as a QL int, then there is no result.
The parser accepts an optional leading - or + character, fol-
lowed by one or more decimal digits.

toLowerCasestring The result is the receiver with all letters converted to lower
case.

toStringstring The result is the receiver.
toUpperCasestring The result is the receiver with all letters converted to upper

case.
trim string The result is the receiver with all whitespace removed from

the beginning and end of the string.
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Regular expressions are as defined by java.util.regex.Pattern in Java. For
more information, see the Java API Documentation.

15.18 Evaluation
This section specifies the evaluation of a QL program. Evaluation happens in
three phases. First, the program is stratified into a number of layers. Second, the
layers are evaluated one by one. Finally, the queries in the QL file are evaluated
to produce sets of ordered tuples.

15.18.1 Stratification
A QL program can be stratified to a sequence of layers. A layer is a set of predicates
and types.

A valid stratification must include each predicate and type in the QL program. It
must not include any other predicates or types.

A valid stratification must not include the same predicate in multiple layers.

Formulas, variable declarations and expressions within a predicate body have a
negation polarity that is positive, negative, or zero. Positive and negative are
opposites of each other, while zero is the opposite of itself. The negation polarity
of a formula or expression is then determined as follows:

• The body of a predicate is positive.

• The formula within a negation formula has the opposite polarity to that of
the negation formula.

• The condition of a conditional formula has zero polarity.

• The formula on the left of an implication formula has the opposite polarity
to that of the implication.

• The formula and variable declarations of an aggregate have zero polarity.

• If the monotonicAggregates language pragma is not enabled, or the original
formula and variable declarations are both omitted, then the expressions and
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order by expressions of the aggregate have zero polarity.

• If the monotonicAggregates language pragma is enabled, and the original
formula and variable declarations were not both omitted, then the expres-
sions and order by expressions of the aggregate have the polarity of the ag-
gregate.

• If a forall has two quantified formulas, then the first quantified formula has
the opposite polarity to that of the forall.

• The variable declarations of a forall have the opposite polarity to that of
the forall.

• If a forex has two quantified formulas, then the first quantified formula has
zero polarity.

• The variable declarations of a forex have zero polarity.

• In all other cases, a formula or expression has the same polarity as its imme-
diately enclosing formula or expression.

For a member predicate p we define the strict dispatch dependencies. The strict
dispatch dependencies are defined as:

• The strict dispatch dependencies of any predicates that override p.

• If p is not abstract, C.class for any class C with a predicate that overrides p.

For a member predicate p we define the dispatch dependencies. The dispatch de-
pendencies are defined as:

• The dispatch dependencies of predicates that override p.

• The predicate p itself.

• C.class where C is the class that defines p.

Predicates, and types can depend and strictly depend on each other. Such depen-
dencies exist in the following circumstances:

• If A strictly depends on B, then A depends on B.

• If A depends on B, then A also depends on anything on which B depends.
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• If A strictly depends on B, then A and anything depending on A strictly depend
on anything on which B depends (including B itself).

• If a predicate has a parameter whose declared type is a class type C, it depends
on C.class.

• If a predicate declares a result type which is a class type C, it depends on
C.class.

• A member predicate of class C depends on C.class.

• If a predicate contains a variable declaration of a variable whose declared
type is a class type C, then the predicate depends on C.class. If the decla-
ration has negative or zero polarity then the dependency is strict.

• If a predicate contains a variable declaration with negative or zero polarity
of a variable whose declared type is a class type C, then the predicate strictly
depends on C.class.

• If a predicate contains an expression whose type is a class type C, then the
predicate depends on C.class. If the expression has negative or zero polarity
then the dependency is strict.

• A predicate containing a predicate call depends on the predicate to which the
call resolves. If the call has negative or zero polarity then the dependency is
strict.

• A predicate containing a predicate call, which resolves to a member predicate
and does not have a super expression as a qualifier, depends on the dispatch
dependencies of the root definitions of the target of the call. If the call has
negative or zero polarity then the dependencies are strict. The predicate
strictly depends on the strict dispatch dependencies of the root definitions.

• For each class C in the program, for each base class B of C, C.extends depends
on B.B.

• For each class C in the program, for each base type B of C that is not a class
type, C.extends depends on B.

• For each class C in the program, C.class depends on C.C.
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• For each class C in the program, C.C depends on C.extends.

• For each class C in the program that declares a field of class type B, C.C
depends on B.class.

• For each class C with a characteristic predicate, C.C depends on the charac-
teristic predicate.

• For each abstract class A in the program, for each type C that has A as a base
type, A.class depends on C.class.

• A predicate with a higher-order body may strictly depend or depend on each
predicate reference within the body. The exact dependencies are left unspec-
ified.

A valid stratification must have no predicate that depends on a predicate in a later
layer. Additionally, it must have no predicate that strictly depends on a predicate
in the same layer.

If a QL program has no valid stratification, then the program itself is not valid.
If it does have a stratification, a QL implementation must choose exactly one
stratification. The precise stratification chosen is left unspecified.

15.18.2 Layer evaluation
The store is first initialized with the database content of all built-in predicates and
external predicates. The database content of a predicate is a set of ordered tuples
that are included in the database.

Each layer of the stratification is populated in order. To populate a layer, each
predicate in the layer is repeatedly populated until the store stops changing. The
way that a predicate is populated is as follows:

• To populate a predicate that has a formula as a body, find all named tuples
with the variables of the predicates arguments that match the body formula
and the types of the variables. If the predicate has a result, then the match-
ing named tuples should additionally have a value for result that is in the
result type of the predicate. If the predicate is a member predicate, then the
tuples should additionally have a value for this that is of the type assigned
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to this by the typing environment. For each such tuple, convert the named
tuple to an ordered tuple by sequencing the values of the tuple, starting with
this if present, followed by the predicates arguments, followed by result
if present. Add each such converted tuple to the predicate in the store.

• To populate an abstract predicate, do nothing.

• The population of predicates with a higher-order body is left only partially
specified. A number of tuples are added to the given predicate in the store.
The tuples that are added must be fully determined by the QL program and
by the state of the store.

• To populate the type C.extends for a class C, identify each value v that has
the following properties: It is in all non-class base types of C, and for each
class base type B of C it is in B.B. For each such v, add (v) to C.extends.

• To populate the type C.C for a class C, if C has a characteristic predicate, then
add all tuples from that predicate to the store. Otherwise add each tuple in
C.extends into the store.

• To populate the type C.class for a non-abstract class type C, add each tuple
in C.C to C.class.

• To populate the type C.class for an abstract class type C, for each class D
that has C as a base type add all tuples in D.class to C.class.

• To populate a select clause, find all named tuples with the variables declared
in the from clause that match the formula given in the where clause, if there
is one. For each named tuple, convert it to a set of ordered tuples where each
element of the ordered tuple is, in the context of the named tuple, a value of
one of the corresponding select expressions. Collect all ordered tuples that
can be produced from all of the restricted named tuples in this way. Add each
such converted tuple to the select clause in the store.

15.18.3 Query evaluation
A query is evaluated as follows:

1. Identify all named tuples in the predicate targeted by the query.
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2. Sequence the ordered tuples lexicographically. The first elements of the lex-
icographic order are the tuple elements specified by the ordering directives
of the predicate targeted by the query, if it has any. Each such element is
ordered either ascending (asc) or descending (desc) as specified by the or-
dering directive, or ascending if the ordering directive does not specify. This
lexicographic order is only a partial order, if there are fewer ordering di-
rectives than elements of the tuples. An implementation may produce any
sequence of the ordered tuples that satisfies this partial order.

15.19 Summary of syntax
The complete grammar for QL is as follows:

ql ::= moduleBody

module ::= annotation* "module" modulename "{" moduleBody "}"

moduleBody ::= (import | predicate | class | module | alias | select)*

import ::= annotations "import" importModuleId ("as" modulename)?

qualId ::= simpleId | qualId "." simpleId

importModuleId ::= qualId
| importModuleId "::" simpleId

select ::= ("from" var_decls)? ("where" formula)? "select" as_exprs (
,→"order" "by" orderbys)?

as_exprs ::= as_expr ("," as_expr)*

as_expr ::= expr ("as" simpleId)?

orderbys ::= orderby ("," orderby)*

orderby ::= simpleId ("asc" | "desc")?
(continues on next page)
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(continued from previous page)

predicate ::= annotations head optbody

annotations ::= annotation*

annotation ::= simpleAnnotation | argsAnnotation

simpleAnnotation ::= "abstract"
| "cached"
| "external"
| "final"
| "transient"
| "library"
| "private"
| "deprecated"
| "override"
| "query"

argsAnnotation ::= "pragma" "[" ("noinline" | "nomagic" | "noopt") "]"
| "language" "[" "monotonicAggregates" "]"
| "bindingset" "[" (variable ( "," variable)*)? "]"

head ::= ("predicate" | type) predicateName "(" (var_decls)? ")"

optbody ::= ";"
| "{" formula "}"
| "=" literalId "(" (predicateRef "/" int ("," predicateRef "/

,→" int)*)? ")" "(" (exprs)? ")"

class ::= annotations "class" classname "extends" type ("," type)* "{"␣
,→member* "}"

member ::= character | predicate | field

character ::= annotations classname "(" ")" "{" formula "}"

(continues on next page)
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(continued from previous page)

field ::= annotations var_decl ";"

moduleId ::= simpleId | moduleId "::" simpleId

type ::= (moduleId "::")? classname | dbasetype | "boolean" | "date" |
,→"float" | "int" | "string"

exprs ::= expr ("," expr)*

alias := annotations "predicate" literalId "=" predicateRef "/" int ";"
| annotations "class" classname "=" type ";"
| annotations "module" modulename "=" moduleId ";"

var_decls ::= var_decl ("," var_decl)*

var_decl ::= type simpleId

formula ::= fparen
| disjunction
| conjunction
| implies
| ifthen
| negated
| quantified
| comparison
| instanceof
| inrange
| call

fparen ::= "(" formula ")"

disjunction ::= formula "or" formula

conjunction ::= formula "and" formula

implies ::= formula "implies" formula

(continues on next page)
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(continued from previous page)

ifthen ::= "if" formula "then" formula "else" formula

negated ::= "not" formula

quantified ::= "exists" "(" expr ")"
| "exists" "(" var_decls ("|" formula)? ("|" formula)? ")"
| "forall" "(" var_decls ("|" formula)? "|" formula ")"
| "forex" "(" var_decls ("|" formula)? "|" formula ")"

comparison ::= expr compop expr

compop ::= "=" | "!=" | "<" | ">" | "<=" | ">="

instanceof ::= expr "instanceof" type

inrange ::= expr "in" range

call ::= predicateRef (closure)? "(" (exprs)? ")"
| primary "." predicateName (closure)? "(" (exprs)? ")"

closure ::= "*" | "+"

expr ::= dontcare
| unop
| binop
| cast
| primary

primary ::= eparen
| literal
| variable
| super_expr
| postfix_cast
| callwithresults

(continues on next page)
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(continued from previous page)

| aggregation
| any
| range
| setliteral

eparen ::= "(" expr ")"

dontcare ::= "_"

literal ::= "false" | "true" | int | float | string

unop ::= "+" expr
| "-" expr

binop ::= expr "+" expr
| expr "-" expr
| expr "*" expr
| expr "/" expr
| expr "%" expr

variable ::= varname | "this" | "result"

super_expr ::= "super" | type "." "super"

cast ::= "(" type ")" expr

postfix_cast ::= primary "." "(" type ")"

aggregation ::= aggid ("[" expr "]")? "(" (var_decls)? ("|" (formula)?␣
,→("|" as_exprs ("order" "by" aggorderbys)?)?)? ")"

| aggid ("[" expr "]")? "(" as_exprs ("order" "by"␣
,→aggorderbys)? ")"

| "unique" "(" var_decls "|" (formula)? ("|" as_exprs)?
,→")"

aggid ::= "avg" | "concat" | "count" | "max" | "min" | "rank" |
,→"strictconcat" | "strictcount" | "strictsum" | "sum"

(continues on next page)
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(continued from previous page)

aggorderbys ::= aggorderby ("," aggorderby)*

aggorderby ::= expr ("asc" | "desc")?

any ::= "any" "(" var_decls ("|" (formula)? ("|" expr)?)? ")"

callwithresults ::= predicateRef (closure)? "(" (exprs)? ")"
| primary "." predicateName (closure)? "(" (exprs)?

,→")"

range ::= "[" expr ".." expr "]"

setliteral ::= "[" expr ("," expr)* "]"

simpleId ::= lowerId | upperId

modulename ::= simpleId

classname ::= upperId

dbasetype ::= atLowerId

predicateRef ::= (moduleId "::")? literalId

predicateName ::= lowerId

varname ::= simpleId

literalId ::= lowerId | atLowerId | "any" | "none"
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CHAPTER

SIXTEEN

QLDOC COMMENT SPECIFICATION

This document is a formal specification for QLDoc comments.

16.1 About QLDoc comments
You can provide documentation for a QL entity by adding a QLDoc comment in
the source file. The QLDoc comment is displayed as pop-up information in QL
editors, for example when you hover over a predicate name.

16.2 Notation
A QLDoc comment is a valid QL comment that begins with /** and ends with */.

The content of a QLDoc comment is the textual body of the comment, omitting
the initial /**, the trailing */, and the leading whitespace followed by * on each
internal line.

A QLDoc comment precedes the next QL syntax element after it in the file.

16.3 Association
A QLDoc comment may be associated with any of the following QL syntax ele-
ments:

• Class declarations
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• Non-member predicate declarations

• Member predicate declarations

• Modules

For class and predicate declarations, the associated QLDoc comment (if any) is
the closest preceding QLDoc comment.

For modules, the associated QLDoc comment (if any) is the QLDoc comment
which is the first element in the file, and moreover is not associated with any
other QL element.

16.4 Inheritance
If a member predicate has no directly associated QLDoc and overrides a set of
member predicates which all have the same QLDoc, then the member predicate
inherits that QLDoc.

16.5 Content
The content of a QLDoc comment is interpreted as standard Markdown, with the
following extensions:

• Fenced code blocks using backticks.

• Automatic interpretation of links and email addresses.

• Use of appropriate characters for ellipses, dashes, apostrophes, and quotes.

The content of a QLDoc comment may contain metadata tags as follows:

The tag begins with any number of whitespace characters, followed by an @ sign.
At this point there may be any number of non-whitespace characters, which form
the key of the tag. Then, a single whitespace character which separates the key
from the value. The value of the tag is formed by the remainder of the line, and
any subsequent lines until another @ tag is seen, or the end of the content is
reached.
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override, 80

pragma, 80
private, 80

QLDoc, 91
query, 14

range, 49
rank, 53
recursion, 84
result, 9

select, 15
setliteral, 49
strictconcat, 54
strictcount, 54
strictsum, 54
string, 19
subtraction, 62
sum, 53
super, 49

then, 72
this, 22
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bound, 44
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