Learning CodeQL
Release 1.24

Jul 27, 2021

1 QL tutorials

1.1

1.2

1.3

1.4

1.5

CONTENTS

3

Introduction to QL o . i e e e e e e e e e e e e e 3
R R - T 1 ol 7 1 - 3
1.1.2 RUNNINE @ QUETY '+ v v v v e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e 3
1.1.3 Simple eXeICiSES . . . ¢ v v it e e e e e e e e e e e e e e 4
EXercise 1 o i e e e e 4
EXEICISE 2 . . o ot i e e e e e e 4
EXOICISE 3 . o o it e e e e 4
EXEICiSE 4 . . . o o e e e 4

1.1.4 Example query with multipleresults 4
1.1.5 Example CodeQL QUETIES o ¢ o v vttt e e e e e e e e e e e e 5
1.1.6 Furtherreading i it ittt e e e e e e e e e e 6
Find the thief e 6
1.2.1 INtroduCtion o it e e e e e e e e e e 6
1.2.2 QLIDraries ot v ittt e e e e e e e e e 7
1.2.3 Startthesearch e 8
1.2.4 Logical CONNECHIVES v i it e et e e e e e e e e e e e e e e 8
1.2.5 The real inVestigation v v v i v v it e e e e e e e e e e e e e 9
HInts . .. o e 9

1.2.6 More advanced QUETIES v vttt ittt e e e e e e 10
1.2.7 Capturetheculprit e 11
1.2.8 Furtherreading vt i it i ittt e e e e e e e e e e e e 11
Catch the fire starter o e e e e e e e e e 11
1.3.1 Selectthe southerners ittt e e 12
1.3.2 Travel reStriCtions v i it it e e e e e e e e e e e e e e e e e e 13
1.3.3 Identifythe bald banditsttt e 14
1.3.4 Furtherreading o oottt e e 14
Crown the rightful heir e e e e e e e e 14
1.4.1 KingBasilsheir e 15
1.4.2 Selectthetrue heir. i i i e e e e e e e e e 17
1.4.3 Experimental explorations e e 17
1.4.4 Furtherreading oo i ittt e e e 18
Cross the TiVer. o i e e 18
1.5.1 IntroduCtion ¢ ittt e e e e e 18
1.5.2 Walkthrough e 18
Model the elements of the puzzle 18

Model the action of ferrying oo i i e e e e 21

Find paths from one state to another 22

Display the results oot e 23

1.5.3 Alternative solUtiONS o o i e e e e e e e e e 23

1.5.4 Furtherreading oo i i it e e 24

2 CodeQL queries 25
2.1 About CodeQL QUETIES ¢t i ittt e e e e e e e e e 25
211 OVEIVIEW .« v et e i e 25

2.1.2 BaSiC QUETY SITUCLUIE . . & v v v o e i e e e e e e e e et e e e e e e e e e e e e e e e et e e e 25
QuUEry Metadata . . . v v v v e e e e e e e e e e e e e e e 26

IMPOrt StAtEMENES . & . ¢ v v o v e 26
Fromclause e e e e 27

Where clause e e 27

Select clatse e e 27

2.1.3 Viewing the standard CodeQL qQUETIies v v i v vt ittt et e et e 28

2.1.4 Contributing qUeries o it e e e e e 28

2.1.5 Queryhelpfiles e 28

2.2 Metadata for CodeQL QUETIES . . o v v v v vt v e ettt e e e e e e e e e e e e e e 28
2.2.1 Aboutquerymetadatat e e e e e e e e e e 28

2.2.2 Metadata Properties v v v v it e e e e e e e e e e e e e e e e 28

2.2.3 Additional properties for filter queries e 30

224 Example . ..o e e e 30

2.3 Queryhelpfiles e e 30
231 OVEIVIEW .« vttt it e 30

232 SHIUCIUTE .« . v vt it e e e e e e e e e e et e e e e e e e e e e e 31

2.3.3 Section-level elements L e 31

2.3.4 Blockelements e e e e 32

2.3.5 Listelementst e e e e e e e e e 32

2.3.6 Table €lements it e e e e e e 33

2.3.7 Inline CONtENt o o vttt e e e e e e e 33

2.3.8 Queryhelpinclusion. e e 34
Section-level include elements e e 35

Block-level include elements e 35

2.4 Defining theresultsof aquery e 35
2.4.1 About qUEry results e e e e e e e e 35

242 OVEIVIEW . o o ittt e et e e e e e e e e e e e e e 36

2.4.3 Developing a select Statemento v v v ittt e 36

Basic select Statement v v it i e e e e e e e e e e e e e e e e e 36

Including the name of the similar file 0. 36

Adding a link to the similar file 37

Adding details of the extent of similarity 37

2.4.4 Furtherreading i e 38

2.5 Providing locations in CodeQL QUETIES+« ¢ o i i it e e e e e e e e e e 38
2.5.1 Aboutlocations e e e 38
Providing URLS v v it i e i e e e e e e et e e e e e e e e e 38

Providing location information 40

Using extracted location information 40

2.5.2 The toString() predicate o v v vt ittt e e e e e 41

2.5.3 Furtherreading oottt i e e e e e e 41

2.6 About data flow analysis i i e e e e e e e 41
2.6.1 OVEIVIEW . . ¢ ittt e e e e e e e e e e 41

2.6.2 Dataflow graph. e 41

2.6.3 Normal data flow vs taint tracking e 42

2.6.4 Furtherreading ittt i it e e e e e e e 43

2.7 Creating path qQUETIES i it it e e e e e e e e e 43
271 OVEIVIEBW . . o vttt e e e e e e e e e e e e 43

Path query examples. i it i e e e e e e e 43

2.7.2 Constructing apath query e 44

Path query metadata v it it e e e e e e e e e 45

Generating path explanations e 45

Declaring sources and sinks e 45

Defining flow conditions it i e e 46

Select clatse e 46
Furtherreading o it i e e e e e e 47

2.8 Troubleshooting query performancet 47
2.8.1 About query performance.ttt e e e e e e e 47

2.8.2 Performance tips it e e e e e e e 47
Eliminate cartesian products o o ittt e e e e 47

USE SPECIHIC LY PES . v v v v v et e e e e e e e e e e e e e e e e 48

Determine the most specific types of a variable 48

Avoid complex reCUISION v v vt e e e e e e e e 49

Fold predicates v v v vt e et e e e e e e e e e e e e e e e 49

2.8.3 Furtherreading ot i ittt e e e e e 50

3 CodeQL for C and C++ 51
3.1 Basicqueryfor Cand CH++codet ittt e e e 51
3.1.1 Aboutthe qQUETY vt e e e e e e e e e e e 51

3.1.2 Running the QUETY« v vttt e e e et e e e e e e e e e e e e e e 51
About the QUETY SETUCLUTE . . . v v v v v e e e e e e e e e e et e e et e e e e e e et 52

3.1.3 Extendthe qUery i e e e 53
Remove false positive results e e e 53

3.1.4 Furtherreading e e e 54

3.2 CodeQLlibrary for Cand CH++o e 54
3.2.1 About the CodeQL library for Cand C++ ittt et e e 54

3.2.2 Commonly-used library classes e 54
Declaration Classes v o v vt it e e e e e e e e e e e e e e e 54

Statement Classes e e e e e e e e 57

EXpression classes vt it e e e e e e e e e 58

TYPE Classes . v . v v i e e e e e e e e e e e e 62
Preprocessor Classes o v v it e e e 63

3.2.3 Furtherreadingt e e e 64

3.3 Functionsin Cand CH+ it e e e e 64
331 OVEIVIEW . o o o it it e 64

3.3.2 Finding all static functions it ittt e e e 64

3.3.3 Finding functions thatarenotcalled L 65

3.3.4 Excluding functions that are referenced with a function pointer 65

3.3.5 Finding a specific function e e 65

3.4

3.5

3.6

3.7

3.8

3.3.6 Furtherreading ittt it e e e e e 66

Expressions, types, and statements in Cand C++ e 66
3.4.1 Expressions and typesin CodeQL e 66
Finding assignments t0 ZEr0 v v v v v vt it e e e e e 66
Finding assignments of 0 to an integert iii ettt . 67
3.4.2 Statementsin CodeQL e e e 67
Finding assignments of 0 in for loop initialization. 68
Finding assignments of 0 within the loopbody 68
3.4.3 Furtherreading e 69
Conversions and classesin Cand CH+. it e 69
3.5.1 CONVETSIONS . . v v v vt e et e et e e e e e e e e e e e e e e e e e 69
Exploring the subexpressions of an assignment 69
3.5.2 ClaSSeS . v v i i e e e e e e e 71
Finding derived Classes v v i i it i e e e e e e e e e e 71
Finding derived classes with destructors 72
Finding base classes where the destructor isnotvirtual 72
3.5.3 Furtherreading o i e e e e 73
Analyzing data flowin Cand CH++ e e 73
3.6.1 Aboutdataflow. e 73
3.6.2 Localdataflow e 73
Using local data flow e e 73
Using local taint tracking o e 74
Examples e e e e 75
EXEICISES .« v v ot it e e e e e e e e e e e e 76
3.6.3 Globaldata flow e 76
Using global data flow e e 76
Using global taint tracking 77
Examples e e e 77
EXEICISES . o v v o i e e e e e e e e e e e e e e e e e e e 79
3.6.4 ANSWEIS . o o o it it e 79
EXercise 1 oo e 79
EXEICiSe 2 . . . ot e 79
EXEICiSe 3 . . o o ot i e e e e e e e 80
EXEICISE 4 . . o o ot i e e e e e e e 80
3.6.5 Furtherreading oot it it i e e e e e 80
Refining a query to account for edge caseso it it e e 81
371 OVEIVIEW . o o vt e e e e e e e e e e e e e e 81
3.7.2 Finding every private field and checking for initialization 81
3.7.3 BaSICQUEIY . . ¢ vt ittt e e e e e e e e e e e e e 81
3.7.4 Refinement lexcluding fields initialized by lists 81
3.7.5 Refinement 2excluding fields initialized by external libraries 82
3.7.6 Refinement 3excluding fields initialized indirectly. 82
3.7.7 Refinement 4simplifying the query 83
3.7.8 Furtherreading i e e 84
Detecting a potential buffer overflow. e 84
3.8.1 Problemdetecting memory allocation that omits space for a null termination character . . . 84
3.8.2 BaSICQUEIY . . o vttt e e e e e 84
Defining the entities of interest v o v it i it e e e 84
Finding the strlen(string) patternt ittt ittt ettt 85

Defining the basic qQUETY it i e e e e e 85

3.8.3 Improving the query using the SSAlibrary 86
Including examples where the string size is stored beforeuse 86

Extending the query to include allocations passed viaavariable 87

3.8.4 Furtherreading o o e e 88

3.9 Using the guards library in Cand CH++ it e e e e 88
3.9.1 Aboutthe guardslibrary e e 88

3.9.2 Thecontrols prediCate u i v ittt e 89

3.9.3 The ensuresEq and ensuresLt predicates it e 89

The ensuresEq predicate ittt e e e 89

The ensuresLt predicate v i i it it it et e e 89

3.9.4 The comparesEq and comparesLt predicates v v, 90

The comparesEq predicate o it 90

The comparesLt predicate it it e e 90

3.9.5 Furtherreading i e e 90

3.10 Using range analysis for Cand C++4 oottt i e e e e e 90
3.10.1 About the range analysislibrary 90
3.10.2 Bounds prediCates e e e e 90
3.10.3 Overflow predicates v v i vt it e e e e e e e e e 91
3.10.4 Example . . . oo e e e e e e e e 91
3.10.5 Furtherreading i v i it i e e e e e e 91

3.11 Hash consing and value numbering. e 91
3.11.1 About the hash consing and value numbering libraries 91
3.11.2 Example C code . . . v v vttt it e e e e e e e e e e e e e e e e 92
3.11.3 Valuenumbering e 92

The value numbering API i e e e e e 92

Why not a predicate? i e e e 93

Example QUETY o v it e e e e e e e e e e 93

3.11.4 Hash COnSINg o vttt e e e e e e e 93

The hash consing APL it i et e e e e e e e e e e e e 93

Example QUETY vt it e e e e e e e e e e e e e e e 93

3.11.5 Furtherreading it e 94

4 CodeQL for C# 95
4.1 Basicquery for C# code. ittt e e e e e 95
4.1.1 Aboutthe QUEIY it e e e e e e 95

4.1.2 Runningthe qUery e e e e 95
About the qQUETY SETUCLUTE v v vt et e e e e e e e e e e e e e e e e e e 96

4.1.3 Extendthe qUery i e e 97
Remove false positive results e 97

4.1.4 Furtherreading vt i i e e e e e e e 98

4.2 CodeQL Ibrary for C# o v it e e e e e e e e e e 98
4.2.1 About the CodeQL libraries for C# o i ittt e e e e e e 98

Class hierarchies e 99

EXOICISES . o v v o it i e e e e e 99

4.2.2 Files . . . o e 100

Class hierarchy e e 100

Predicates v o i i e e e e e e e e e e e e 100

EXamples . . . i e e e e e e e e e 100

BXOICISES .« v v v v e e e e e e e e e e e e e e e e e e 100

4.2.3 EIemMENLS v ot e e e e e e e e 100
PrediCates v v vt e e e e e e e e e e e e e e 101
Examples e e e e 101

4.2.4 LOCAtIONS .« v v v v v e 101
Class hierarchy it e e e e e e e e e e e 101
PrediCates v v it e e e e e e e e e e e 101
Examples e 102

4.2.5 Declarations i i e e e e e e 102
Class hierarchy i i et e e e e e e e e e e e 102
PrediCates o vt e e e e e e 102
EXamples . . . o e e e e e e e e 102

4.2.6 Variables e e e e 103
Class hierarchy i it it e e e e e e e e e e e e e e e 103
PrediCates v vt e e e e e e 103
EXamples . . . o e e e e e e e e 103

4.2.7 TYPES o i e e e e e e 103
Class hierarchy e 104
Predicates . . . v v i i e e e e e e e 105
EXamples . . . o e e e e e e e e e 106
BXOICISES .« v v v v e 106

4.2.8 Callables e e 106
Class hierarchy e 106
PrediCates . . . v v v i e e e e e e e e e e 107
EXamples . . . o e e e e e e e e 108

4.2.9 StAteImMEITS . . v v v v e 108
Class hierarchy e e 109
Examples e 110
) o] J 111

4.2.10 EXPIESSIONS & v v v v v v e 111
Class hierarchy e e e e e e e 111
PrediCates . . . v v v it e e e e e e e e e e e e e 114
Examples 114
) o] J 115

4.2.11 AtribDULES . . . o o e e e e e e 115
Class hierarchy e e e e e e e e 115
PrediCates v v v it i e e e e e e e e e e e e e 115
Examples e e 115
5 ol << J 116

4.2.12 ADNSWEIS o v v v v e e e e e e e e e e e e e e e e e e e 116
EXEICiSe 1 . . v i ittt e e e e e e e e e e e e 116
BXOICISE 2 . . i i i e e e e e e e e e e e e e e e e e 116
BXOICISE 3 o v i i e e e e e e e e e e e e e e e 117
) s] 117
BXOICISE 5 . . v it e e e e e e e e e e 117
EXEICISE 6 . . v v i i it e 117
BXOICISE 7 v v v v e e e e e e e e e e e e e e e e 117
EXEICISE 8 . o i i i i e e e e e e e e 117
EXOICISE O o v i i i e e e e e e e e e e e e e e e e 117

vi

EXercise 10 . . o v i ittt e e e e e e e e e e e e 117

Exercise 11 . . . o o e 118
Exercise 12 e e e e e e e e 118
4.2.13 Furtherreading i e 118
4.3 Analyzing data flow in C# e 118
4.3.1 Aboutthisarticle e 118
4.3.2 Localdataflow e 119
Using local data flow 119

Using local taint tracking o i i i i e e e e e e 119
EXamples . . . i e e e e e e e 120
EXEICISES . . v v o it it e e e e e e e 121

4.3.3 Globaldataflow 121
Using global data flow 121

Using global taint tracking o i e e e e e 122

FIOW SOUICES . . . o o i e i e e e e e e e e e e e e e e e e e e e 122
ExXample e e e e e e e e 122

Class hierarchy e e e e e e e e 123
Examples e 123
EXEICISES . o ¢ vt ot it e e e e e e e e e e e e 124

4.3.4 Extending library data flow e 124
Class hierarchy et e e e e e e e e 124
Example e e e e 125
BXOTCISES & v v v o e 126

4.3.5 ANSWETS . v o vttt i e 126
EXercise 1 . . . oo e e e e 126
EXEICiSe 2 . . o o o e e e 127
EXErcisSe 3 o i e 127
EXEICISe 4 . . . o ot i e e e e e e e e e 127
EXEICISE 5 . o o o ot i e e e e e 128
EXEICISE 0 . . o o it it e e e e e e e e 128

4.3.6 Furtherreading ot ittt i e e e e e e 129
5 CodeQL for Go 131
5.1 Basicqueryfor Gocode i e e e e e 131
5.1.1 Aboutthe qQUEIY it it i e e e e e e e 131
5.1.2 Running the QUETY v i vt it et et e e e e e e e e e e e e e e e e 131
About the qUETY StTUCLUTE ittt et e e e e e e e e e e 132

5.1.3 Extend the qUEry i e 133
Remove false positive results e e 133

5.1.4 Furtherreading o i e e e 134
5.2 CodeQLIbrary for GO v v v i i i e e e e e e e e e e 134
521 OVEIVIEW .+ v vt v e 134
5.2.2 ADBSIIACE SYNTAX « v v v v v v v v et e e e e e e e e e e e e e e 135
STAtEMENTS . & v v vt e 137
EXPIESSIONS & v v v v e e e e e et e 138
NAmMeS . . o o e e e e e e e e 139
FUNCHONS . . . o ot ittt e 140

5.2.3 Entitiesand name binding e 140
5.2.4 Typeinformation i e e e 141

vii

5.2.5 Control flow e e 141

526 Dataflow. . . . e 142

5.2.7 Callgraph 144

5.2.8 Global data flow and taint tracking 144

5.2.9 Advanced libraries e e 144

Basic blocks and dominance 144

Condition guard NOdes ittt e e e e e e e e e 145

Static single-assignment form L e 145

Global value numbering it it e e e e e e e 146

5.2.10 Furtherreading o it e e e 146

5.3 Abstract syntax tree classes for working with Go programs 146
5.3.1 Statement classes e e e 146

5.3.2 EXPression Classesot e e 148
Literals . . . o o i e e e e e e e 148

Unary eXpresSiOns . . v v v v v v o i e i e 148

Binary eXpressions . v v v v v v v e 148

TYPE €XPIeSSIONS .« v v v v v ot et e 149

Name eXPressiOns . . . v v v v vt it it e 149
MiSCellan@ous v v e it e e e e e e e e e e e e e e e e e 150

5.3.3 Furtherreading ittt i e e e e e e 150

5.4 Modeling data flow in Go libraries i i e e e 151
541 SOUICES « v v v v et e e et e et e e e e e e e e 151

5.4.2 Flow propagation. v v vttt it e e e e e e 151

5.4.3 SANILIZEIS . . v v vt it e 152

5.4.4 SINKS e 152

6 CodeQL for Java 153
6.1 Basicquery forJava code i e e e 153
6.1.1 Aboutthe qUETY o i i i e e e e e e e 153

6.1.2 RuUNNING the QUETY v v i e it e et e e et e e e e e e e e e e e e e 153
About the QUETY SETUCLUTE . . . v v v v v e e e e e e e e e e et e e et e e e e e e et 154

6.1.3 Extendthe qUery i e e 155
Remove false positive results e e e 155

6.1.4 Furtherreading e e 156

6.2 CodeQLIibrary forJava v v v i it e e e e e e e e e e e e e e 156
6.2.1 About the CodeQL library forJava ittt e 156

6.2.2 Summary of the library classes e 157

6.2.3 Program elements e e e e e 157
7 157

GEMETICS « & v v o e e e i e 158

Variables e 160

6.2.4 ADSLract SYNtaxX tr€€ . . . v v v v v ittt e e e e e e e e e e e 160

6.2.5 Metadata e e e e e e e e e e e e e e e e e e 161

60.2.6 MELTICS . .« o o it it e e e e e e e e e e e e e e e e e e 162

6.2.7 Call graph e e e e e 163

6.2.8 Furtherreading it e e e e 164

6.3 AnalyzingdataflowinJava e 164
6.3.1 Aboutthisarticle e e 164

6.3.2 Localdataflow e 164

viii

6.4

6.5

6.6

6.7

6.8

6.9

Using local data flow i e e 164

Using local taint tracking it i e e e 165
Exampleso e e 165
EXEICISES . .« ¢ vt ot it e e e e e e e e e e 166
6.3.3 Globaldata flow e 166
Using global data flowt e e e e 167
Using global taint tracking 167
FIOW SOUICES . . . v o i e 168
Examples e e e e 168
EXOICISES . o v v o it e e e e e e e e e e e e e e 168
60.3.4 ANSWEIS . . o o it it e e e e e e e e e e 169
Exercise 1 oo e e 169
EXEICISe 2 . . o o it i e e e e e e e e 169
EXOICISE 3 . o o it e e e e e e e e 169
EXEICISE 4 . . o o ot i e e e e e e e e 170
6.3.5 Furtherreading o . ittt e e e e e 170
Java [YPeS . . o e e e e e e e e e e e e e e e 171
6.4.1 About working with Java types e e 171
6.4.2 Example: Finding problematic array castS. v vt ittt e e e e 171
IMpProvements v i i it i e e e e e e e e 172
6.4.3 Example: Finding mismatched containschecks 173
IMPIOVEMENTS . . vt v v i e 176
6.4.4 Furtherreading i e 176
Overflow-prone comparisons iN Java« o v v vt vttt e e e e e e e e 177
6.5.1 Aboutthisarticle e 177
6.5.2 Initial QUETY o it e e e e e e e e e e e 177
6.5.3 Generalizing the quUery e 178
6.5.4 Furtherreading e 179
Navigating the call graph e e e 179
6.6.1 Call graph classes. v vttt i e e e e e e e e 179
6.6.2 Example: Finding unused methods e 181
6.6.3 Furtherreading e 182
Annotations N Java o i e e e e e e e e e e e e e e e e e 183
6.7.1 About working with annotations e 183
6.7.2 Example: Finding missing @0verride annotationso v v v v v ... 184
6.7.3 Example: Finding calls to deprecated methods 185
IMPIOVEMENTS . . v vt v e i e 186
6.7.4 Furtherreading e 187
Javadoc e e e 187
6.8.1 About analyzing Javadoc e e e 188
6.8.2 Example: Finding spurious @param tags v v v v v v et i e e e e e 188
6.8.3 Example: Finding spurious @throws tags« o v v vttt i it i 189
IMPrOVEMENtS . . . ot it it e 190
6.8.4 Furtherreading i e e 192
Working with source locations v v v i v v it e e e e e e e e e e e e e 192
6.9.1 About source locations e 192
6.9.2 Location API e e e e e e e e 193
6.9.3 Determining white space around an Operatort i e 194
6.9.4 Find suspicioUs NESHING oo vt it e e e e e e e e 194

Improving the qUETY o o it e e e 195

6.9.5 Furtherreading e 196

6.10 Abstract syntax tree classes for working with Java programs 196
6.10.1 Statement Classes o v vt it e e e e e e e e e e e e 196
6.10.2 EXPression Classes v v v v v ittt it e e e e e e e e e e e 197
Literals . . . o o v e e e e 198

UNAary eXpreSSiOnS . v v v v v v v e v e i e 198

Binary eXpressions v v v vt e e e e e e e 198

ASSIgNMENT EXPIreSSIONS « &« v v v v v v v e 199

ACCESSES o v v v i e e e e e e e e e e e e e e e e e e 200
Miscellaneous ¢ v it e e e e e e e e 200

6.10.3 Furtherreading oo i it i e e e e e e 200

7 CodeQL for JavaScript 203
7.1 Basic query for JavaScript code e e e 203
7.1.1 Aboutthe QUETY ot it i e e e e e e e e e e 203

7.1.2 Running the qUEry e 203
About the qUETY SLTUCLUTE ittt et e e e e e e e e e et e e 204

7.1.3 Extend the qUETrY o it i e e e e e e e 205
Remove false positive results e e e 205

7.1.4 Furtherreading i it it e e e e e e e 206

7.2 CodeQL library for JavaScript oo it e e 206
/2 S © 1<) o (5 206

7.2.2 Introducing the library e 206
Textual level. e 207

Lexical level 208

Syntactic level e e e 210

Name binding o o oot e 218

Control flow . . . L o o e e 219

Data flow e e 220

Type INference o v it e e e e e e e e e 222

Call graph o e e e e e 223
Inter-procedural data flow e 224

SYNEAX EITOTS & v v v v v e e e e e e e et e e e e e e e e e e e e e e e e e e e 226
Frameworks e 226
Miscellaneous o v vt e e e e 228

7.2.3 Furtherreading e 231

7.3 CodeQL library for TypeScript o v it e e e e 232
7.3 1 OVEIVIEW . . o o i e 232

7.3.2 SYNEAX .+ . vttt e e e e e e e e e e e e e e e e e e e 232

Type annotations ¢ v v v v i e 232

Function Signatures o v v ittt it i e e 233

TYPE PATAIMELETIS . . . o o v v i i e 234

Classes and interfaces o v vttt i e e e e e 234

StaAtemMEeNTS ot it e e e e e e e e e e e e e 235

EXPIeSSIONS .« v v v v e 235

Ambient declarations e e e e e 235

7.3.3 Static type information e 236

BasSiC USAZE & v v v v it e e e e e e e e e e e e e e e 236

7.4

7.5

7.6

Working With tyPes o v v i it e e e e e e e e e e e e e 236

Canonical names and named tyPeS . . .« v v v vt it e e e e e e e 238
FUNCHON tYPES . .« ¢ ot e e i e 238
Call resolution i e e e 238
Inheritance and subtyping i i i e e e e 238
7.34 Namebinding i e e e e e e 239
TYPE NAMES . . . o o o i e 240
Namespace NAMES v v v v ittt ettt e e e e e e e e 241
7.3.5 Furtherreading i e e e 241
Analyzing data flow in JavaScript and TypeScript ittt 241
741 OVEIVIEW . . o ot e it e e et e 242
7.4.2 Dataflownodes e 242
7.4.3 Localdataflow e e 243
Source NOAeS e e e e e e e e e 244
EXEICISES . o v v ot i e e e e e e e e e e e e e e 245
7.4.4 Globaldataflow e 245
Using global data flow e 246
Using global taint tracking e 246
Examples e e e e e 247
SANItIZErS o i e e e e e e e e e e e 248
Sanitizer GUATAS v v e e e e e e e e e e e e e e e e e 248
Additional taint StEPS i . e e e e e e 249
BXOTCISES & v v v o e 250
N 1) 251
EXercise 1 . . . oo e e e e 251
EXEICiSe 2 . . o o o e e e 251
EXErcisSe 3 o i e 251
EXEICISe 4 . . . o ot i e e e e e e e e e 252
7.4.6 Furtherreading o oot e e 252
Using flow labels for precise data flow analysis, 253
7.5 1 OVEIVIEW . . o o it it et e e e e e e e e e e e e e e 253
7.5.2 Limitations of basic data-flow analysis 253
7.5.3 Usingflowlabels e 253
7.5.4 Example e 254
7.5.5 APL . e e e e e e e e e 258
7.5.6 Standard queries using flow labels e 259
7.5.7 Furtherreading e 259
Using type tracking for APImodeling it 259
7.6.1 OVEIVIEW . . o o o it i i e 260
7.6.2 The problem of recognizing method calls 260
7.6.3 Type tracking in general e 261
7.6.4 Tracking the database instance 262
7.6.5 Trackinginthewholemodel 263
7.6.6 Tracking associated data e 264
7.6.7 Back-tracking callbacks e 265
7.6.8 SUMMATIY . .« o vt ittt et et et e e et e e e e e e e e e e 266
7.6.9 LIMItatiONS . . . v o v v v e i e 267
7.6.10 Whentousetypetrackingt tieei 267
7.6.11 Type tracking in the standard libraries 268

Xi

7.6.12 Furtherreading it ittt i et e e e e e e e e 268

7.7 Abstract syntax tree classes for working with JavaScript and TypeScript programs 268
7.7.1 Statement Classes i i i e e e 269

7.7.2 EXPression Classes e 270
Literals . . . o ot e e e 270

Identifiers i e e 270

Primary €XPreSSiONS .« . v v v v v v v e i e 270

Properties it i e e e 271

PrOPEILY ACCESSES . v v v v v v e 271

Function callsand mew i e e 271

UNAary eXPreSSiONS .« v v v v v v v e v e 272

Binary eXpressions . . . v v v v i e 272

ASSIgNMENt €XPIeSSIONIS « « v v v v v v v v e e e et e e e e e e e e e e 273

Update eXPressiOnS v v v v v v v o v e i e e e e e e e e e e e e e e e e e 274
MisCellaneous o o i it e e e e e e e e 274

7.7.3 Furtherreading ot it i e e e e e 274

7.8 Data flow cheat sheet for JavaScript e 274
7.8.1 Taint tracking path queries 274

7.8.2 DataFlowmodule e e 275

7.8.3 StringOpsmodule e e 277

7.8.4 Uty . . o o e e e e e e e e e e e 277

7.8.5 Systemand Network. e 277

7.8.6 Files . . . e e e e 277

7.8.7 ASTNOAES ot e e e e e e e e e 277

7.8.8 String matching. e 278

7.8.9 Type tracking ot i i e e e e e e e e e 278
7.8.10 Troubleshooting e 279
7.8.11 Furtherreading o it it e e e 279

8 CodeQL for Python 281
8.1 Basicqueryfor Pythoncodet e e e e 281
8.1.1 Aboutthe qQUETY ¢ it e e e e e 281

8.1.2 Runningthequery e 281
About the qQUETrY SETUCLUTE o v v it et e e e e e e e e e e e e e e e e 282

8.1.3 Extendthe qUEry it it e e e e e 283
Remove false positive results e e e e 283

8.1.4 Furtherreading i e 284

8.2 CodeQL library for Python e e 284
8.2.1 About the CodeQL library for Python. it 284

8.2.2 Syntactic Classes e e 284
SCOPE . . e e e e e e e e e e e e e e e e 285

STAtEMENT ot e e e e e e e e e e e 285

EXPression oo it i e e 286

Variable e 286

Other source code elementsttt it e e 286

EXamples . . . o e e e e e e e e e e 286

SUMMATY . . . o e it e 287

8.2.3 Control flow classes i e e e 289
ExXample e e e e e e 289

xii

8.3

8.4

8.5

8.6

8.7

SUMMATY . v o vt e e e e e e e e et e e e e e e e e et e e e e e e e e e e e e 290

8.2.4 Type-inference classes oot e 290
Example e e e e 290
SUMMATY . . . o e e e e e e e 290

8.2.5 Taint-tracking classes v i i it i e e e e e e e e e 291
SUMMATY . . . o e et e 291

8.2.6 Furtherreading i i e e e e e 291

Functions in Python e 291

8.3.1 Finding all functions called get e 291

8.3.2 Finding all methods called getttt et 292

8.3.3 Finding one line methods called get ninno.. 292

8.3.4 Finding a call to a specific function e 292

8.3.5 Furtherreading e 292

Expressions and statements in Python it e e e 293

8.4.1 StatemMeNLS . . . ¢ o v vt et e 293
Example finding redundant global statements 294
Example finding if statements with redundant branches 294

8.4.2 EXPIeSSIONS . o v v v vttt e i e 294
Example finding comparisons to integer or string literals usingis 296
Example finding duplicates in dictionary literals. 296
Example finding Java-style getterso it i e 297

8.4.3 Class and function definitions it 298

8.4.4 Furtherreading e 298

Pointer analysis and type inference in Python, 298

8.5.1 TheValue Class. . . . o v v vttt it e e e e e e e e e e e 298
SUMMATY . . . o e et e 298

8.5.2 Points-to analysis and type inference e 299

8.5.3 Using points-to analysis o oot 299

8.5.4 Using typeinference ittt e e 301

8.5.5 Finding calls using call-graph analysis 301

8.5.6 Furtherreadingt it i i e e e 302

Analyzing control flow in Python 303

8.6.1 About analyzing control flow 303

8.6.2 The ControlFlowNode Class v v v i it it e et e e et e e e e e e e e e e 303
Example finding unreachable ASTnodes e, 305
Example finding unreachable statements 305

8.6.3 TheBasicBlock Class v v v v it it e et e e e e e e e e 305
Example finding mutually exclusive basic blocks 305
Example finding mutually exclusive blocks within the same function 306

8.6.4 Furtherreadingt ittt i i e e e e e 306

Analyzing data flow and tracking tainted datain Python 306

8.7.1 About data flow and taint tracking 307
Fundamentals of taint tracking using data flow analysis 307
LIMitations v o vttt et e 307

8.7.2 Using taint-tracking for Python 307
Example e e e e e e e e 308
Converting a taint-tracking querytoapathquery 309

8.7.3 Tracking custom taint kindsand flows 310

8.7.4 Furtherreading i e e 311

xiii

9 CodeQL training and variant analysis examples

9.1 CodeQL and variant analysis v i v it i e e e e e e e e e e
9.2 Learning CodeQL for variant analysist
9.2.1 CodeQL and variant analysis for C/C++ i
9.2.2 CodeQL and variant analysis forJava
9.2.3 Furtherreading it ittt i e e e e e e e e

10 Recent terminology changes

10.1 CodeQL.
102 QL .o oo vvn ..

10.3 CodeQL databases

11 Further reading

313
313
313
313
314
314

315
315
315
315

317

Xiv

Learning CodeQL, Release 1.24

CodeQL is the code analysis platform used by security researchers to automate variant analysis. You can use
CodeQL queries to explore code and quickly find variants of security vulnerabilities and bugs. These queries are
easy to write and share-visit the topics below and our open source repository on GitHub to learn more. You
can also try out CodeQL in the query console on LGTM.com. Here, you can query open source projects directly,
without having to download CodeQL databases and libraries.

CodeQL is based on a powerful query language called QL. The following topics help you understand QL in general,
as well as how to use it when analyzing code with CodeQL.

Important

If youve previously used QL, you may notice slight changes in terms we use to describe some important
concepts. For more information, see our note about Recent terminology changes.

CONTENTS 1

https://github.com/github/codeql
https://lgtm.com/query

Learning CodeQL, Release 1.24

2 CONTENTS

CHAPTER

ONE

QL TUTORIALS

Solve puzzles to learn the basics of QL before you analyze code with CodeQL. The tutorials teach you how to
write queries and introduce you to key logic concepts along the way.

1.1 Introduction to QL

Work through some simple exercises and examples to learn about the basics of QL and CodeQL.

1.1.1 Basic syntax
The basic syntax of QL will look familiar to anyone who has used SQL, but it is used somewhat differently.

QL is a logic programming language, so it is built up of logical formulas. QL uses common logical connectives
(such as and, or, and not), quantifiers (such as forall and exists), and other important logical concepts such
as predicates.

QL also supports recursion and aggregates. This allows you to write complex recursive queries using simple QL
syntax and directly use aggregates such as count, sum, and average.

1.1.2 Running a query

You can try out the following examples and exercises using CodeQL for VS Code, or you can run them in the query
console on LGTM.com. Before you can run a query on LGTM.com, you need to select a language and project to
query (for these logic examples, any language and project will do).

Once you have selected a language, the query console is populated with the query:

import <language>

select "hello world"

This query returns the string "hello world".

More complicated queries typically look like this:

from /* ... variable declarations ... */
where /* ... logical formulas ... */
select /* ... ezpressions ... */

For example, the result of this query is the number 42:

https://help.semmle.com/codeql/codeql-for-vscode.html
https://lgtm.com/query
https://lgtm.com/query

Learning CodeQL, Release 1.24

from int x, int y
where x = 6 and y = 7
select x * y

Note that int specifies that the type of x and y is integer. This means that x and y are restricted to integer values.
Some other common types are: boolean (true or false), date, float, and string.

1.1.3 Simple exercises

You can write simple queries using the some of the basic functions that are available for the int, date, float,
boolean and string types. To apply a function, append it to the argument. For example, 1.toString() converts
the value 1 to a string. Notice that as you start typing a function, a pop-up is displayed making it easy to select
the function that you want. Also note that you can apply multiple functions in succession. For example, 100.
log() .sqrt () first takes the natural logarithm of 100 and then computes the square root of the result.

Exercise 1

Write a query which returns the length of the string "1gtm". (Hint: here is the list of the functions that can be
applied to strings.)

See answer in the query console on LGTM.com

There is often more than one way to define a query. For example, we can also write the above query in the shorter
form:

select "lgtm".length()

Exercise 2
Write a query which returns the sine of the minimum of 375 (3 raised to the power 5) and 245.6.

See answer in the query console on LGTM.com

Exercise 3
Write a query which returns the opposite of the boolean false.

See answer in the query console on LGTM.com

Exercise 4
Write a query which computes the number of days between June 10 and September 28, 2017.

See answer in the query console on LGTM.com

1.1.4 Example query with multiple results

The exercises above all show queries with exactly one result, but in fact many queries have multiple results. For
example, the following query computes all Pythagorean triples between 1 and 10:

4 Chapter 1. QL tutorials

https://help.semmle.com/QL/ql-spec/language.html#built-ins-for-string
https://lgtm.com/query/2103060623/
https://lgtm.com/query/2093780343/
https://lgtm.com/query/2093780344/
https://lgtm.com/query/2100260596/
https://en.wikipedia.org/wiki/Pythagorean_triple

Learning CodeQL, Release 1.24

from int x, int y, int z
where x in [1..10] and y in [1..10] and z in [1..10] and
X¥X + yxy = z*z

select x, y, Z

See this in the query console on LGTM.com

To simplify the query, we can introduce a class SmallInt representing the integers between 1 and 10. We can
also define a predicate square () on integers in that class. Defining classes and predicates in this way makes it
easy to reuse code without having to repeat it every time.

class SmallInt extends int {
SmallInt() { this in [1..10] }
int square() { result = this*this }
}

from SmallInt x, Smalllnt y, Smalllnt z
where x.square() + y.square() = z.square()
select x, y, 2z

See this in the query console on LGTM.com

1.1.5 Example CodeQL queries

The previous examples used the primitive types built in to QL. Although we chose a project to query, we didnt use
the information in that projects database. The following example queries do use these databases and give you an
idea of how to use CodeQL to analyze projects.

Queries using the CodeQL libraries can find errors and uncover variants of important security vulnerabilities in
codebases. Visit GitHub Security Lab to read about examples of vulnerabilities that we have recently found in
open source projects.

To import the CodeQL library for a specific programming language, type import <language> at the start of the
query.

import python

from Function f
where count(f.getAnArg()) > 7
select f

See this in the query console on LGTM.com. The from clause defines a variable f representing a Python function.
The where part limits the functions f to those with more than 7 arguments. Finally, the select clause lists these
functions.

import javascript

from Comment c
where c.getText() .regexpMatch(" (7si).*\\bTODO\\b.*")
select ¢

1.1. Introduction to QL 5

https://lgtm.com/query/2100790036/
https://lgtm.com/query/2101340747/
https://securitylab.github.com/
https://lgtm.com/query/2096810474/

Learning CodeQL, Release 1.24

See this in the query console on LGTM.com. The from clause defines a variable c representing a JavaScript
comment. The where part limits the comments c to those containing the word "TOD0". The select clause lists
these comments.

import java

from Parameter p
where not exists(p.getAnAccess())
select p

See this in the query console on LGTM.com. The from clause defines a variable p representing a Java parameter.
The where clause finds unused parameters by limiting the parameters p to those which are not accessed. Finally,
the select clause lists these parameters.

1.1.6 Further reading
* To find out more about how to write your own queries, try working through the QL tutorials.
* For an overview of the other available resources, see Learning CodeQL.

* For a more technical description of the underlying language, see the QL language reference.

1.2 Find the thief

Take on the role of a detective to find the thief in this fictional village. You will learn how to use logical connectives,
quantifiers, and aggregates in QL along the way.

1.2.1 Introduction

There is a small village hidden away in the mountains. The village is divided into four partsnorth, south, east,
and westand in the center stands a dark and mysterious castle Inside the castle, locked away in the highest tower,
lies the kings valuable golden crown. One night, a terrible crime is committed. A thief breaks into the tower and
steals the crown!

You know that the thief must live in the village, since nobody else knew about the crown. After some expert
detective work, you obtain a list of all the people in the village and some of their personal details.

Name | Age | Hair color | Height | Location

Sadly, you still have no idea who could have stolen the crown so you walk around the village to find clues. The
villagers act very suspiciously and you are convinced they have information about the thief. They refuse to share
their knowledge with you directly, but they reluctantly agree to answer questions. They are still not very talkative
and only answer questions with yes or no.

You start asking some creative questions and making notes of the answers so you can compare them with your
information later:

6 Chapter 1. QL tutorials

https://lgtm.com/query/2101530483/
https://lgtm.com/query/2098670762/
https://help.semmle.com/QL/ql-handbook

Learning CodeQL, Release 1.24

Question Answer

1 Is the thief taller than 150 cm? yes

9 Does the thief have blond hair? no

3 Is the thief bald? no

4 Is the thief younger than 30? no

5 Does the thief live east of the cas- | yes
’ tle?

6 Does the thief have black or brown | yes
’ hair?

7 Is the thief taller than 180cm and | no
' shorter than 190cm?

8 Is the thief the tallest person in the | no
’ village?

9 Is the thief shorter than the aver- | yes
’ age villager?

10 Is the thief the oldest person in the | yes

eastern part of the village?

There is too much information to search through by hand, so you decide to use your newly acquired QL skills to

help you with your investigation

1. Open the query console on LGTM.com to get started.

2. Select a language and a demo project. For this tutorial, any language and project will do.

3. Delete the default code import <language> select "hello world".

1.2.2 QL libraries

Weve defined a number of QL predicates to help you extract data from your table. A QL predicate is a mini-query
that expresses a relation between various pieces of data and describes some of their properties. In this case, the
predicates give you information about a person, for example their height or age.

Predicate Description

getAge () returns the age of the person (in years) as an int

getHairColor() | returns the hair color of the person as a string

getHeight () returns the height of the person (in cm) as a float

getLocation() returns the location of the persons home (north, south, east or west) as a string

Weve stored these predicates in the QL library tutorial.qll. To access this library, type import tutorial in

1.2. Find the thief

https://lgtm.com/query
https://help.semmle.com/QL/ql-handbook/predicates.html

Learning CodeQL, Release 1.24

the query console.

Libraries are convenient for storing commonly used predicates. This saves you from defining a predicate every
time you need it. Instead you can just import the library and use the predicate directly. Once you have imported
the library, you can apply any of these predicates to an expression by appending it.

For example, t.getHeight () applies getHeight () to t and returns the height of t.

1.2.3 Start the search

The villagers answered yes to the question Is the thief taller than 150cm? To use this information, you can write
the following query to list all villagers taller than 150cm. These are all possible suspects.

from Person t
where t.getHeight() > 150
select t

The first line, from Person t, declares that t must be a Person. We say that the type of t is Person.

Before you use the rest of your answers in your QL search, here are some more tools and examples to help you
write your own QL queries:

1.2.4 Logical connectives
Using logical connectives, you can write more complex queries that combine different pieces of information.

For example, if you know that the thief is older than 30 and has brown hair, you can use the following where
clause to link two predicates:

where t.getAge() > 30 and t.getHairColor() = "brown"

Note

The predicate getHairColor () returns a string, so we need to include quotation marks around the
result "brown".

If the thief does not live north of the castle, you can use:

where not t.getLocation() = "north"

If the thief has brown hair or black hair, you can use:

where t.getHairColor() = "brown" or t.getHairColor() = "black"

You can also combine these connectives into longer statements:

where t.getAge() > 30
and (t.getHairColor() = "brown" or t.getHairColor() = "black")
and not t.getLocation() = "north"

Note

Weve placed parentheses around the or clause to make sure that the query is evaluated as intended.
Without parentheses, the connective and takes precedence over or.

8 Chapter 1. QL tutorials

https://help.semmle.com/QL/ql-handbook/types.html
https://help.semmle.com/QL/ql-handbook/formulas.html#logical-connectives

Learning CodeQL, Release 1.24

Predicates dont always return exactly one value. For example, if a person p has black hair which is turning gray,
p.getHairColor () will return two values: black and gray.

What if the thief is bald? In that case, the thief has no hair, so the getHairColor () predicate simply doesnt
return any results!

If you know that the thief definitely isnt bald, then there must be a color that matches the thiefs hair color. One way
to express this in QL is to introduce a new variable c of type string and select those t where t.getHairColor ()
matches a value of c.

from Person t, string c
where t.getHairColor() = c
select t

Notice that we have only temporarily introduced the variable ¢ and we didnt need it at all in the select clause.
In this case, it is better to use exists:

from Person t
where exists(string c | t.getHairColor() = c)
select t

exists introduces a temporary variable c of type string and holds only if there is at least one string c that
satisfies t.getHairColor() = c.

Note

If you are familiar with logic, you may notice that exists in QL corresponds to the existential quan-
tifier in logic. QL also has a universal quantifier forall(vars | formula 1 | formula 2) which
is logically equivalent to not exists(vars | formula 1 | not formula 2).

1.2.5 The real investigation

You are now ready to track down the thief! Using the examples above, write a query to find the people who satisfy
the answers to the first eight questions:

Question Answer
1 | Is the thief taller than 150 cm? yes
2 | Does the thief have blond hair? no
3 | Is the thief bald? no
4 | Is the thief younger than 30? no
5 | Does the thief live east of the castle? yes
6 | Does the thief have black or brown hair? yes
7 | Is the thief taller than 180cm and shorter than 190cm? | no
8 | Is the thief the oldest person in the village? no

Hints
1. Dont forget to import tutoriall!
2. Translate each question into QL separately. Look at the examples above if you get stuck.

3. For question 3, remember that a bald person does not have a hair color.

1.2. Find the thief 9

https://help.semmle.com/QL/ql-handbook/formulas.html#quantified-formulas
https://help.semmle.com/QL/ql-handbook/formulas.html#quantified-formulas

Learning CodeQL, Release 1.24

4. For question 8, note that if a person is not the oldest, then there is at least one person who is older than
them.

5. Combine the conditions using logical connectives to get a query of the form:

import tutorial
from Person t
where <condition 1> and

not <condition 2> and

select t

Once you have finished, you will have a list of possible suspects. One of those people must be the thief!
See the answer in the query console on LGTM.com
Note

In the answer, we used /* and */ to label the different parts of the query. Any text surrounded by /*
and */ is not evaluated as part of the QL code, but is just a comment.

You are getting closer to solving the mystery! Unfortunately, you still have quite a long list of suspects To find out
which of your suspects is the thief, you must gather more information and refine your query in the next step.

1.2.6 More advanced queries

What if you want to find the oldest, youngest, tallest, or shortest person in the village? As mentioned in the
previous topic, you can do this using exists. However, there is also a more efficient way to do this in QL using
functions like max and min. These are examples of aggregates.

In general, an aggregate is a function that performs an operation on multiple pieces of data and returns a single
value as its output. Common aggregates are count, max, min, avg (average) and sum. The general way to use an
aggregate is:

<aggregate>(<variable declarations> | <logical formula> | <expression>)

For example, you can use the max aggregate to find the age of the oldest person in the village:

max(int i | exists(Person p | p.getAge() = i) | 1)

This aggregate considers all integers i, limits i to values that match the ages of people in the village, and then
returns the largest matching integer.

But how can you use this in an actual query?

If the thief is the oldest person in the village, then you know that the thiefs age is equal to the maximum age of
the villagers:

from Person t
where t.getAge() = max(int i | exists(Person p | p.getAge() = i) | 1)
select t

10 Chapter 1. QL tutorials

https://lgtm.com/query/1505743955992/
https://help.semmle.com/QL/ql-handbook/expressions.html#aggregations

Learning CodeQL, Release 1.24

This general aggregate syntax is quite long and inconvenient. In most cases, you can omit certain parts of the
aggregate. A particularly helpful QL feature is ordered aggregation. This allows you to order the expression using
order by.

For example, selecting the oldest villager becomes much simpler if you use an ordered aggregate.

select max(Person p | | p order by p.getAge())

The ordered aggregate considers every person p and selects the person with the maximum age. In this case, there
are no restrictions on what people to consider, so the <logical formula> clause is empty. Note that if there are
several people with the same maximum age, the query lists all of them.

Here are some more examples of aggregates:

Example Result

min(Person p | p.getLocation() = "east" | p order by shortest person in the east of the village

p.getHeight))

count (Person p | p.getlLocation() = "south" | p) number of people in the south of the vil-
lage

avg(Person p | | p.getHeight()) average height of the villagers

sum(Person p | p.getHairColor() = "brown" | p. combined age of all the villagers with

gethge()) brown hair

1.2.7 Capture the culprit

You can now translate the remaining questions into QL:

Question Answer
9 Is the thief the tallest person in the village? no
10 | Is the thief shorter than the average villager? yes
11 | Is the thief the oldest person in the eastern part of the village? | yes

Have you found the thief?

See the answer in the query console on LGTM.com

1.2.8 Further reading
* QL language reference

* CodeQL tools

1.3 Catch the fire starter

LearndaboutdQLapredicatesdandaclassesatodsolvedyourdsecondamysterydasaadQLadetective.

Just as youve successfully found the thief and returned the golden crown to the castle, another terrible crime is
committed. Early in the morning, a few people start a fire in a field in the north of the village and destroy all the
crops!

1.3. Catch the fire starter 11

https://lgtm.com/query/1505744186085/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

You now have the reputation of being an expert QL detective, so you are once again asked to find the culprits.

This time, you have some additional information. There is a strong rivalry between the north and south of the
village and you know that the criminals live in the south.

Read the examples below to learn how to define predicates and classes in QL. These make the logic of your queries
easier to understand and will help simplify your detective work.
1.3.1 Select the southerners

This time you only need to consider a specific group of villagers, namely those living in the south of the village.
Instead of writing getLocation() = "south" in all your queries, you could define a new predicate isSouthern:

predicate isSouthern(Person p) {
p.getLocation() = "south"

}

The predicate isSouthern (p) takes a single parameter p and checks if p satisfies the property p.getLocation()
= "south".

Note
* The name of a predicate always starts with a lowercase letter.

* You can also define predicates with a result. In that case, the keyword predicate is replaced
with the type of the result. This is like introducing a new argument, the special variable result.
For example, int getAge() { result = ... }returnsan int.

You can now list all southerners using:

/* define predicate “isSouthern’ as above */

from Person p
where isSouthern(p)
select p

This is already a nice way to simplify the logic, but we could be more efficient. Currently, the query looks at
every Person p, and then restricts to those who satisfy isSouthern(p). Instead, we could define a new class
Southerner containing precisely the people we want to consider.

class Southerner extends Person {
Southerner() { isSouthern(this) }

A class in QL represents a logical property: when a value satisfies that property, it is a member of the class. This
means that a value can be in many classesbeing in a particular class doesnt stop it from being in other classes too.

The expression isSouthern(this) defines the logical property represented by the class, called its characteristic
predicate. It uses a special variable this and indicates that a Person this is a Southerner if the property
isSouthern(this) holds.

Note

If you are familiar with object-oriented programming languages, you might be tempted to think of
the characteristic predicate as a constructor. However, this is not the caseit is a logical property which

12 Chapter 1. QL tutorials

https://help.semmle.com/QL/ql-handbook/predicates.html
https://help.semmle.com/QL/ql-handbook/types.html#classes

Learning CodeQL, Release 1.24

does not create any objects.

You always need to define a class in QL in terms of an existing (larger) class. In our example, a Southerner is a
special kind of Person, so we say that Southerner extends (is a subset of) Person.

Using this class you can now list all people living in the south simply as:

from Southerner s
select s

You may have noticed that some predicates are appended, for example p.getAge (), while others are not, for
example isSouthern(p). This is because getAge () is a member predicate, that is, a predicate that only applies
to members of a class. You define such a member predicate inside a class. In this case, getAge () is defined inside
the class Person. In contrast, isSouthern is defined separately and is not inside any classes. Member predicates
are especially useful because you can chain them together easily. For example, p.getAge () .sqrt () first gets the
age of p and then calculates the square root of that number.

1.3.2 Travel restrictions

Another factor you want to consider is the travel restrictions imposed following the theft of the crown. Origi-
nally there were no restrictions on where villagers could travel within the village. Consequently the predicate
isAllowedIn(string region) held for any person and any region. The following query lists all villagers, since
they could all travel to the north:

from Person p
where p.isAllowedIn("north")
select p

However, after the recent theft, the villagers have become more anxious of criminals lurking around the village
and they no longer allow children under the age of 10 to travel out of their home region.

This means that isAllowedIn(string region) no longer holds for all people and all regions, so you should
temporarily override the original predicate if p is a child.

Start by defining a class Child containing all villagers under 10 years old. Then you can redefine
isAllowedIn(string region) as a member predicate of Child to allow children only to move within their
own region. This is expressed by region = this.getLocation().

class Child extends Person {
/* the characteristic predicate */
Child() { this.getAge() < 10 }

/% a member predicate */
override predicate isAllowedIn(string region) {
region = this.getLocation()

}

Now try applying isAllowedIn(string region) to a person p. If p is not a child, the original definition is used,
but if p is a child, the new predicate definition overrides the original.

You know that the fire starters live in the south and that they must have been able to travel to the north. Write a
query to find the possible suspects. You could also extend the select clause to list the age of the suspects. That

1.3. Catch the fire starter 13

Learning CodeQL, Release 1.24

way you can clearly see that all the children have been excluded from the list.
See the answer in the query console on LGTM.com

You can now continue to gather more clues and find out which of your suspects started the fire

1.3.3 Identify the bald bandits

You ask the northerners if they have any more information about the fire starters. Luckily, you have a witness!
The farmer living next to the field saw two people run away just after the fire started. He only saw the tops of
their heads, and noticed that they were both bald.

This is a very helpful clue. Remember that you wrote a QL query to select all bald people:

from Person p
where not exists (string c | p.getHairColor() = c)
select p

To avoid having to type not exists (string c | p.getHairColor() = c) every time you want to select a
bald person, you can instead define another new predicate isBald.

predicate isBald(Person p) {
not exists (string c | p.getHairColor() = c)

}

The property isBald(p) holds whenever p is bald, so you can replace the previous query with:

from Person p
where isBald(p)
select p

The predicate isBald is defined to take a Person, so it can also take a Southerner, as Southerner is a subtype
of Person. It cant take an int for examplethat would cause an error.

You can now write a query to select the bald southerners who are allowed into the north.
See the answer in the query console on LGTM.com

You have found the two fire starters! They are arrested and the villagers are once again impressed with your
work.

1.3.4 Further reading
* QL language reference

¢ CodeQL tools

1.4 Crown the rightful heir

This is a QL detective puzzle that shows you how to use recursion in QL to write more complex queries.

14 Chapter 1. QL tutorials

https://lgtm.com/query/2551838470440192723/
https://lgtm.com/query/2572701606358725253/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

1.4.1 King Basils heir

Phew! No more crimes in the villageyou can finally leave the village and go home.

But then During your last night in the village, the old kingthe great King Basildies in his sleep and there is chaos
everywhere!

The king never married and he had no children, so nobody knows who should inherit the kings castle and fortune.
Immediately, lots of villagers claim that they are somehow descended from the kings family and that they are the
true heir. People argue and fight and the situation seems hopeless.

Eventually you decide to stay in the village to resolve the argument and find the true heir to the throne.

You want to find out if anyone in the village is actually related to the king. This seems like a difficult task at first,
but you start work confidently. You know the villagers quite well by now, and you have a list of all the parents in
the village and their children.

To find out more about the king and his family, you get access to the castle and find some old family trees. You
also include these relations in your database to see if anyone in the kings family is still alive.

The following predicate is useful to help you access the data:

Predicate Description

parentOf (Person p) | returns a parent of p

For example, you can list all children p together with their parents:

from Person p
select parentOf(p) + " is a parent of " + p

There is too much information to search through by hand, so you write a QL query to help you find the kings heir.

We know that the king has no children himself, but perhaps he has siblings. Write a query to find out:

from Person p

where parentOf (p) = parentOf ("King Basil") and
not p = "King Basil"

select p

He does indeed have siblings! But you need to check if any of them are alive Here is one more predicate you
might need:

Predicate Description
isDeceased() | holds if the person is deceased

Use this predicate to see if the any of the kings siblings are alive.

from Person p

where parentOf (p) = parent0f("King Basil") and
not p = "King Basil"
and not p.isDeceased()

select p

1.4. Crown the rightful heir 15

Learning CodeQL, Release 1.24

Unfortunately, none of King Basils siblings are alive. Time to investigate further. It might be helpful to define
a predicate child0f () which returns a child of the person. To do this, the parent0f () predicate can be used
inside the definition of child0f (). Remember that someone is a child of p if and only if p is their parent:

Person childOf (Person p) {
p = parentOf (result)
}

Note

As illustrated by the example above, you dont have to directly write result = <expression
involving p> in the predicate definition. Instead you can also express the relation between p and
result backwards by writing p in terms of result.

Try to write a query to find out if any of the kings siblings have children:

from Person p

where parentOf (p) = parent0f("King Basil") and
not p = "King Basil"

select childOf (p)

The query returns no results, so they have no children. But perhaps King Basil has a cousin who is alive or has
children, or a second cousin, or

This is getting complicated. Ideally, you want to define a predicate relativeOf (Person p) that lists all the
relatives of p.

How could you do that?

It helps to think of a precise definition of relative. A possible definition is that two people are related if they have
a common ancestor.

You can introduce a predicate ancestor0f (Person p) that lists all ancestors of p. An ancestor of p is just a
parent of p, or a parent of a parent of p, or a parent of a parent of a parent of p, and so on. Unfortunately, this
leads to an endless list of parents. You cant write an infinite QL query, so there must be an easier approach.

Aha, you have an idea! You can say that an ancestor is either a parent, or a parent of someone you already know
to be an ancestor.

You can translate this into QL as follows:

Person ancestor0f (Person p) {
result = parent0f(p) or
result = parentOf (ancestor0f (p))
}

As you can see, you have used the predicate ancestor0f () inside its own definition. This is an example of
recursion.

This kind of recursion, where the same operation (in this case parent0f ()) is applied multiple times, is very
common in QL, and is known as the transitive closure of the operation. There are two special symbols + and *
that are extremely useful when working with transitive closures:

* parentOf+(p) applies the parent0f() predicate to p one or more times. This is equivalent to
ancestor0f (p).

16 Chapter 1. QL tutorials

https://help.semmle.com/QL/ql-handbook/recursion.html

Learning CodeQL, Release 1.24

» parentOf*(p) applies the parentOf () predicate to p zero or more times, so it returns an ancestor of p or
p itself.

Try using this new notation to define a predicate relativeOf () and use it to list all living relatives of the king.
Hint:

Here is one way to define relative0f ():

Person relativeOf (Person p) {
parent0f*(result) = parent0fx*(p)
}

Dont forget to use the predicate isDeceased () to find relatives that are still alive.

See the answer in the query console on LGTM.com

1.4.2 Select the true heir
At the next village meeting, you announce that there are two living relatives.
To decide who should inherit the kings fortune, the villagers carefully read through the village constitution:

The heir to the throne is the closest living relative of the king. Any person with a criminal record will not be considered.
If there are multiple candidates, the oldest person is the heir.

As your final challenge, define a predicate hasCriminalRecord so that hasCriminalRecord(p) holds if p is any
of the criminals you unmasked earlier (in the Find the thief and Catch the fire starter tutorials).

See the answer in the query console on LGTM.com

1.4.3 Experimental explorations

Congratulations! You have found the heir to the throne and restored peace to the village. However, you dont
have to leave the villagers just yet. There are still a couple more questions about the village constitution that you
could answer for the villagers, by writing QL queries:

* Which villager is next in line to the throne? Could you write a predicate to determine how closely related
the remaining villagers are to the new monarch?

* How would you select the oldest candidate using a QL query, if multiple villagers have the same relationship
to the monarch?

You could also try writing more of your own QL queries to find interesting facts about the villagers. You are free
to investigate whatever you like, but here are some suggestions:

* What is the most common hair color in the village? And in each region?
* Which villager has the most children? Who has the most descendants?
* How many people live in each region of the village?

* Do all villagers live in the same region of the village as their parents?

* Find out whether there are any time travelers in the village! (Hint: Look for impossible family relations.)

1.4. Crown the rightful heir 17

https://lgtm.com/query/6710025057257064639/
https://lgtm.com/query/1820692755164273290/

Learning CodeQL, Release 1.24

1.4.4 Further reading
* QL language reference

¢ CodeQL tools

1.5 Cross the river

Use common QL features to write a query that finds a solution to the River crossing logic puzzle.

1.5.1 Introduction
River crossing puzzle

A man is trying to ferry a goat, a cabbage, and a wolf across a river. His boat can only take himself
and at most one item as cargo. His problem is that if the goat is left alone with the cabbage, it will
eat it. And if the wolf is left alone with the goat, it will eat it. How does he get everything across the
river?

A solution should be a set of instructions for how to ferry the items, such as First ferry the goat across the river,
and come back with nothing. Then ferry the cabbage across, and come back with

There are lots of ways to approach this problem and implement it in QL. Before you start, make sure that you are
familiar with how to define classes and predicates in QL. The following walkthrough is just one of many possible
implementations, so have a go at writing your own query too! To find more example queries, see the list below.

1.5.2 Walkthrough

Model the elements of the puzzle

The basic components of the puzzle are the cargo items and the shores on either side of the river. Start by modeling
these as classes.

First, define a class Cargo containing the different cargo items. Note that the man can also travel on his own, so
it helps to explicitly include "Nothing" as a piece of cargo.

Show /hide code

/**% A possible cargo item. */
class Cargo extends string {
Cargo() {
this = "Nothing" or
this = "Goat" or
this = "Cabbage" or
this = "Wolf"

Second, any item can be on one of two shores. Lets call these the left shore and the right shore. Define a class
Shore containing "Left" and "Right".

It would be helpful to express the other shore to model moving from one side of the river to the other. You can do
this by defining a member predicate other in the class Shore such that "Left".other () returns "Right" and
vice versa.

18 Chapter 1. QL tutorials

https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/QL/ql-handbook/types.html#classes
https://help.semmle.com/QL/ql-handbook/predicates.html

Learning CodeQL, Release 1.24

Show /hide code

/*% One of two shores. */
class Shore extends string {
Shore() {
this = "Left" or
this = "Right"

/** Returns the other shore. */
Shore other() {
this = "Left" and result = "Right"
or
this = "Right" and result = "Left"

We also want a way to keep track of where the man, the goat, the cabbage, and the wolf are at any point. We can
call this combined information the state. Define a class State that encodes the location of each piece of cargo.
For example, if the man is on the left shore, the goat on the right shore, and the cabbage and wolf on the left
shore, the state should be Left, Right, Left, Left.

You may find it helpful to introduce some variables that refer to the shore on which the man and the cargo items
are. These temporary variables in the body of a class are called fields.

Show /hide code

/*% A record of where everything is. */
class State extends string {

Shore manShore;

Shore goatShore;

Shore cabbageShore;

Shore wolfShore;

State() { this = manShore + "," + goatShore + "," + cabbageShore + "," + wolfShore }

We are interested in two particular states, namely the initial state and the goal state, which we have to achieve
to solve the puzzle. Assuming that all items start on the left shore and end up on the right shore, define
InitialState and GoalState as subclasses of State.

Show /hide code

/** The initial state, where everything s on the left shore. */
class InitialState extends State {
InitialState() { this = "Left" + "," + "Left" + " " + "Left" + " ," + "Left" }

/** The goal state, where everything is on the right shore. */
class GoalState extends State {
GoalState() { this = "Right" + "," + "Right" + "," + "Right" + "," + "Right" }

Note

1.5. Cross the river 19

https://help.semmle.com/QL/ql-handbook/types.html#fields

Learning CodeQL, Release 1.24

To avoid typing out the lengthy string concatenations, you could introduce a helper predicate
renderState that renders the state in the required form.

Using the above note, the QL code so far looks like this:

Show /hide code

/** A possible cargo item. */
class Cargo extends string {

Cargo() {
this = "Nothing" or
this = "Goat" or

this = "Cabbage" or
this = "Wolf"

/*% One of two shores. */
class Shore extends string {
Shore() {
this = "Left" or
this = "Right"

/** Returns the other shore. */
Shore other() {
this = "Left" and result = "Right"
or
this = "Right" and result = "Left"

/** Renders the state as a string. */
string renderState(Shore manShore, Shore goatShore, Shore cabbageShore, Shore wolfShore) {
result = manShore + "," + goatShore + "," + cabbageShore + "," + wolfShore

/*% A record of where everything is. */
class State extends string {

Shore manShore;

Shore goatShore;

Shore cabbageShore;

Shore wolfShore;

State() { this = renderState(manShore, goatShore, cabbageShore, wolfShore) }

/*% The initial state, where everything is on the left shore. */
class InitialState extends State {
InitialState() { this = renderState("Left", "Left", "Left", "Left") }

/*% The goal state, where everything ts on the right shore. */

(continues on next page)

20 Chapter 1. QL tutorials

Learning CodeQL, Release 1.24

(continued from previous page)

class GoalState extends State {
GoalState() { this = renderState("Right", "Right", "Right", "Right") }

Model the action of ferrying
The basic act of ferrying moves the man and one cargo item to the other shore, resulting in a new state.

Write a member predicate (of State) called ferry, that specifies what happens to the state after ferrying a
particular cargo. (Hint: Use the predicate other.)

Show /hide code

/** Returns the state that is reached after ferrying a particular cargo item. */
State ferry(Cargo cargo) {

cargo = "Nothing" and

result = renderState(manShore.other(), goatShore, cabbageShore, wolfShore)

or

cargo = "Goat" and

result = renderState(manShore.other(), goatShore.other(), cabbageShore, wolfShore)
or
cargo = '"Cabbage" and

result = renderState(manShore.other(), goatShore, cabbageShore.other(), wolfShore)
or

cargo = "Wolf" and

result = renderState(manShore.other(), goatShore, cabbageShore, wolfShore.other())

Of course, not all ferrying actions are possible. Add some extra conditions to describe when a ferrying action is
safe. That is, it doesnt lead to a state where the goat or the cabbage get eaten. For example, follow these steps:

1. Define a predicate isSafe that holds when the state itself is safe. Use this to encode the conditions for
when nothing gets eaten.

2. Define a predicate safeFerry that restricts ferry to only include safe ferrying actions.

Show /hide code

VAL
* Holds if the state %s safe. This occurs when neither the goat mor the cabbage
* can get eaten.
*/
predicate isSafe() {
// The goat can't eat the cabbage.

(goatShore != cabbageShore or goatShore = manShore) and
// The wolf can't eat the goat.
(wolfShore != goatShore or wolfShore = manShore)

}

/** Returns the state that is reached after safely ferrying a cargo item. */
State safeFerry(Cargo cargo) { result = this.ferry(cargo) and result.isSafe() }

1.5. Cross the river 21

Learning CodeQL, Release 1.24

Find paths from one state to another

The main aim of this query is to find a path, that is, a list of successive ferrying actions, to get from the initial
state to the goal state. You could write this list by separating each item by a newline ("\n").

When finding the solution, you should be careful to avoid infinite paths. For example, the man could ferry the
goat back and forth any number of times without ever reaching an unsafe state. Such a path would have an
infinite number of river crossings without ever solving the puzzle.

One way to restrict our paths to a finite number of river crossings is to define a member predicate State
reachesVia(string path, int steps). The result of this predicate is any state that is reachable from the
current state (this) via the given path in a specified finite number of steps.

You can write this as a recursive predicate, with the following base case and recursion step:
» If this is the result state, then it (trivially) reaches the result state via an empty path in zero steps.

* Any other state is reachable if this can reach an intermediate state (for some value of path and steps),
and there is a safeFerry action from that intermediate state to the result state.

To ensure that the predicate is finite, you should restrict steps to a particular value, for example steps <= 7.

Show /hide code

VAL
* Returns all states that are reachable via safe ferrying.
* "path’ keeps track of how it is achieved and “steps’ keeps track of the number of steps ity
—takes.
*/
State reachesVia(string path, int steps) {
// Trivial case: a state is always reachable from itself
steps = 0 and this = result and path = ""
or
// A state is reachable using pathSoFar and then safely ferrying cargo.
exists(int stepsSoFar, string pathSoFar, Cargo cargo |
result = this.reachesVia(pathSoFar, stepsSoFar).safeFerry(cargo) and
steps = stepsSoFar + 1 and
// We expect a solution in 7 steps, but you can choose any value here.
steps <= 7 and
path = pathSoFar + "\n Ferry " + cargo

However, although this ensures that the solution is finite, it can still contain loops if the upper bound for steps
is large. In other words, you could get an inefficient solution by revisiting the same state multiple times.

Instead of picking an arbitrary upper bound for the number of steps, you can avoid counting steps altogether. If
you keep track of states that have already been visited and ensure that each ferrying action leads to a new state,
the solution certainly wont contain any loops.

To do this, change the member predicate to State reachesVia(string path, string visitedStates). The
result of this predicate is any state that is reachable from the current state (this) via the given path without
revisiting any previously visited states.

* As before, if this is the result state, then it (trivially) reaches the result state via an empty path and an
empty string of visited states.

22 Chapter 1. QL tutorials

https://help.semmle.com/QL/ql-handbook/types.html#member-predicates
https://help.semmle.com/QL/ql-handbook/recursion.html

Learning CodeQL, Release 1.24

* Any other state is reachable if this can reach an intermediate state via some path, without revisiting any
previous states, and there is a safeFerry action from the intermediate state to the result state. (Hint: To
check whether a state has previously been visited, you could check if there is an index of visitedStates
at which the state occurs.)

Show /hide code

VAL
* Returns all states that are reachable via safe ferrying.
* ‘path’ keeps track of how it ts achieved.
* ‘wisitedStates” keeps track of previously visited states and is used to avotid loops.
*/
State reachesVia(string path, string visitedStates) {
// Trivial case: a state is always reachable from itself.
this = result and
visitedStates = this and
path = ""
or
// A state is reachable using pathSoFar and then safely ferrying cargo.
exists(string pathSoFar, string visitedStatesSoFar, Cargo cargo |
result = this.reachesVia(pathSoFar, visitedStatesSoFar).safeFerry(cargo) and
// The resulting state has not yet been visited.
not exists(int i | i = visitedStatesSoFar.indexOf (result)) and
visitedStates = visitedStatesSoFar + "/" + result and
path = pathSoFar + "\n Ferry " + cargo

Display the results

Once youve defined all the necessary classes and predicates, write a select clause that returns the resulting path.

Show /hide code

from string path
where any(InitialState i).reachesVia(path, _) = any(GoalState g)
select path

The dont-care expression (_), as the second argument to the reachesVia predicate, represents any value of
visitedStates.

For now, the path defined in reachesVia just lists the order of cargo items to ferry. You could tweak the predicate
and the select clause to make the solution clearer. Here are some suggestions:

* Display more information, such as the direction in which the cargo is ferried, for example "Goat to the
left shore".

e Fully describe the state at every step, for example "Goat: Left, Man: Left, Cabbage: Right,
Wolf: Right".

¢ Display the path in a more visual way, for example by using arrows to display the transitions between states.
play the p Y, ple by g play

1.5.3 Alternative solutions

Here are some more example queries that solve the river crossing puzzle:

1.5. Cross the river 23

https://help.semmle.com/QL/ql-spec/language.html#built-ins-for-string
https://help.semmle.com/QL/ql-handbook/queries.html#select-clauses
https://help.semmle.com/QL/ql-handbook/expressions.html#don-t-care-expressions

Learning CodeQL, Release 1.24

1. This query uses a modified path variable to describe the resulting path in more detail.
See solution in the query console on LGTM.com

2. This query models the man and the cargo items in a different way, using an abstract class and predicate. It
also displays the resulting path in a more visual way.

See solution in the query console on LGTM.com

3. This query introduces algebraic datatypes to model the situation, instead of defining everything as a subclass
of string.

See solution in the query console on LGTM.com

1.5.4 Further reading
* QL language reference
¢ CodeQL tools

* Introduction to QL: Work through some simple exercises and examples to learn about the basics of QL and
CodeQL.

* Find the thief: Take on the role of a detective to find the thief in this fictional village. You will learn how to
use logical connectives, quantifiers, and aggregates in QL along the way.

* Catch the fire starter: LearndaboutaQLapredicatesaandaclassesatoasolvedyouraseconddmysteryaasaadQLadetective.

* Crown the rightful heir: This is a QL detective puzzle that shows you how to use recursion in QL to write
more complex queries.

* Cross the river: Use common QL features to write a query that finds a solution to the River crossing logic
puzzle.

24 Chapter 1. QL tutorials

https://lgtm.com/query/659603593702729237/
https://help.semmle.com/QL/ql-handbook/annotations.html#abstract
https://lgtm.com/query/1025323464423811143/
https://help.semmle.com/QL/ql-handbook/types.html#algebraic-datatypes
https://lgtm.com/query/7260748307619718263/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

CHAPTER

TWO

CODEQL QUERIES

CodeQL queries are used in code scanning analyses to find problems in source code, including potential security
vulnerabilities.

2.1 About CodeQL queries

CodeQL queries are used to analyze code for issues related to security, correctness, maintainability, and readability.

2.1.1 Overview

CodeQL includes queries to find the most relevant and interesting problems for each supported language. You
can also write custom queries to find specific issues relevant to your own project. The important types of query
are:

* Alert queries: queries that highlight issues in specific locations in your code.
* Path queries: queries that describe the flow of information between a source and a sink in your code.

You can add custom queries to custom query packs to analyze your projects in LGTM, use them to analyze a
database with the CodeQL CLI, or you can contribute to the standard CodeQL queries in our open source repository
on GitHub.

This topic is a basic introduction to query files. You can find more information on writing queries for specific
programming languages here, and detailed technical information about QL in the QL language reference. For
more information on how to format your code when contributing queries to the GitHub repository, see the CodeQL
style guide.

2.1.2 Basic query structure

Queries written with CodeQL have the file extension .ql, and contain a select clause. Many of the existing
queries include additional optional information, and have the following structure:

%k

*

* Query metadata
*

*/

import /* ... CodeQL libraries or modules ... */

(continues on next page)

25

https://lgtm.com/help/lgtm/about-queries#what-are-query-packs
https://lgtm.com
https://help.semmle.com/codeql/codeql-cli.html
https://github.com/github/codeql
https://github.com/github/codeql
https://help.semmle.com/QL/learn-ql/
https://help.semmle.com/QL/ql-handbook/index.html
https://github.com/github/codeql/blob/master/docs/ql-style-guide.md
https://github.com/github/codeql/blob/master/docs/ql-style-guide.md
https://help.semmle.com/QL/ql-handbook/queries.html

Learning CodeQL, Release 1.24

(continued from previous page)

/* ... Optional, define CodeQL classes and predicates ... */
from /* ... wvariable declarations ... */

where /* ... logical formula ... */

select /* ... expresstions ... */

The following sections describe the information that is typically included in a query file for alerts. Path queries
are discussed in more detail in Creating path queries.

Query metadata

Query metadata is used to identify your custom queries when they are added to the GitHub repository or used
in your analysis. Metadata provides information about the querys purpose, and also specifies how to interpret
and display the query results. For a full list of metadata properties, see Metadata for CodeQL queries. The exact
metadata requirement depends on how you are going to run your query:

* If you are contributing a query to the GitHub repository, please read the query metadata style guide.

* If you are adding a custom query to a query pack for analysis using LGTM , see Writing custom queries to
include in LGTM analysis.

* If you are analyzing a database using the CodeQL CLI, your query metadata must contain @kind.

 If you are running a query in the query console on LGTM or with the CodeQL extension for VS Code,
metadata is not mandatory. However, if you want your results to be displayed as either an alert or a path,
you must specify the correct @kind property, as explained below. For more information, see Using the query
console on LGTM.com and Analyzing your projects in the CodeQL for VS Code help.

Note

Queries that are contributed to the open source repository, added to a query pack in LGTM, or used
to analyze a database with the CodeQL CLI must have a query type (@kind) specified. The @kind
property indicates how to interpret and display the results of the query analysis:

* Alert query metadata must contain @kind problem.
* Path query metadata must contain @kind path-problem.

When you define the @kind property of a custom query you must also ensure that the rest of your
query has the correct structure in order to be valid, as described below.

Import statements

Each query generally contains one or more import statements, which define the libraries or modules to import
into the query. Libraries and modules provide a way of grouping together related types, predicates, and other
modules. The contents of each library or module that you import can then be accessed by the query. Our open
source repository on GitHub contains the standard CodeQL libraries for each supported language.

When writing your own alert queries, you would typically import the standard library for the language of the
project that you are querying, using import followed by a language:

e C/C++: cpp
* C#: csharp

* Go: go

26 Chapter 2. CodeQL queries

https://github.com/github/codeql/blob/master/docs/query-metadata-style-guide.md#metadata-area
https://lgtm.com/help/lgtm/writing-custom-queries
https://lgtm.com/help/lgtm/writing-custom-queries
https://help.semmle.com/codeql/codeql-cli.html
https://lgtm.com/help/lgtm/using-query-console
https://lgtm.com/help/lgtm/using-query-console
https://help.semmle.com/codeql/codeql-for-vscode/procedures/using-extension.html
https://help.semmle.com/codeql/codeql-cli.html
https://help.semmle.com/QL/ql-handbook/modules.html#library-modules
https://help.semmle.com/QL/ql-handbook/modules.html
https://help.semmle.com/QL/ql-handbook/types.html
https://help.semmle.com/QL/ql-handbook/predicates.html
https://github.com/github/codeql
https://github.com/github/codeql

Learning CodeQL, Release 1.24

e Java: java
* JavaScript/TypeScript: javascript
¢ Python: python

There are also libraries containing commonly used predicates, types, and other modules associated with different
analyses, including data flow, control flow, and taint-tracking. In order to calculate path graphs, path queries
require you to import a data flow library into the query file. For more information, see Creating path queries.

You can explore the contents of all the standard libraries in the CodeQL library reference documentation or in the
GitHub repository.

Optional CodeQL classes and predicates

You can customize your analysis by defining your own predicates and classes in the query. For further information,
see Defining a predicate and Defining a class.

From clause

The from clause declares the variables that are used in the query. Each declaration must be of the form <type>
<variable name>. For more information on the available types, and to learn how to define your own types using
classes, see the QL language reference.

Where clause

The where clause defines the logical conditions to apply to the variables declared in the from clause to generate
your results. This clause uses aggregations, predicates, and logical formulas to limit the variables of interest to
a smaller set, which meet the defined conditions. The CodeQL libraries group commonly used predicates for
specific languages and frameworks. You can also define your own predicates in the body of the query file or in
your own custom modules, as described above.

Select clause

The select clause specifies the results to display for the variables that meet the conditions defined in the where
clause. The valid structure for the select clause is defined by the @kind property specified in the metadata.

Select clauses for alert queries (@kind problem) consist of two columns, with the following structure:

select element, string

* element: a code element that is identified by the query, which defines where the alert is displayed.
* string: a message, which can also include links and placeholders, explaining why the alert was generated.

You can modify the alert message defined in the final column of the select statement to give more detail about
the alert or path found by the query using links and placeholders. For further information, see Defining the results
of a query.

Select clauses for path queries (@kind path-problem) are crafted to display both an alert and the source and
sink of an associated path graph. For more information, see Creating path queries.

2.1. About CodeQL queries 27

https://help.semmle.com/QL/ql-libraries.html
https://github.com/github/codeql
https://help.semmle.com/QL/ql-handbook/predicates.html#defining-a-predicate
https://help.semmle.com/QL/ql-handbook/types.html#defining-a-class
https://help.semmle.com/QL/ql-handbook/types.html
https://help.semmle.com/QL/ql-handbook/types.html#classes
https://help.semmle.com/QL/ql-handbook/index.html
https://help.semmle.com/QL/ql-handbook/expressions.html#aggregations
https://help.semmle.com/QL/ql-handbook/predicates.html
https://help.semmle.com/QL/ql-handbook/formulas.html

Learning CodeQL, Release 1.24

2.1.3 Viewing the standard CodeQL queries

One of the easiest ways to get started writing your own queries is to modify an existing query. To view the standard
CodeQL queries, or to try out other examples, visit the CodeQL and CodeQL for Go repositories on GitHub.

You can also find examples of queries developed to find security vulnerabilities and bugs in open source software
projects on the GitHub Security Lab website and in the associated repository.

2.1.4 Contributing queries

Contributions to the standard queries and libraries are very welcome. For more information, see our contributing
guidelines. If you are contributing a query to the open source GitHub repository, writing a custom query for
LGTM, or using a custom query in an analysis with the CodeQL CLI, then you need to include extra metadata in
your query to ensure that the query results are interpreted and displayed correctly. See the following topics for
more information on query metadata:

* Metadata for CodeQL queries
* Query metadata style guide on GitHub

Query contributions to the open source GitHub repository may also have an accompanying query help file to
provide information about their purpose for other users. For more information on writing query help, see the
Query help style guide on GitHub and the Query help files.

2.1.5 Query help files

When you write a custom query, we also recommend that you write a query help file to explain the purpose of the
query to other users. For more information, see the Query help style guide on GitHub, and the Query help files.

2.2 Metadata for CodeQL queries

Metadata tells users important information about CodeQL queries. You must include the correct query metadata
in a query to be able to view query results in source code.

2.2.1 About query metadata

Any query that is run as part of an analysis includes a number of properties, known as query metadata. Metadata
is included at the top of each query file as the content of a QLDoc comment. This metadata tells LGTM and
the CodeQL extension for VS Code how to handle the query and display its results correctly. It also gives other
users information about what the query results mean. For further information on query metadata, see the query
metadata style guide in our open source repository on GitHub.

Note

The exact metadata requirement depends on how you are going to run your query. For more infor-
mation, see the section on query metadata in About CodeQL queries.

2.2.2 Metadata properties

The following properties are supported by all query files:

28 Chapter 2. CodeQL queries

https://github.com/github/codeql
https://github.com/github/codeql-go
https://securitylab.github.com/research
https://github.com/github/security-lab
https://github.com/github/codeql/blob/master/CONTRIBUTING.md
https://github.com/github/codeql/blob/master/CONTRIBUTING.md
https://github.com/github/codeql/blob/master/docs/query-metadata-style-guide.md
https://github.com/github/codeql/blob/master/docs/query-help-style-guide.md
https://github.com/github/codeql/blob/master/docs/query-help-style-guide.md
https://help.semmle.com/QL/ql-spec/qldoc.html
https://help.semmle.com/codeql/codeql-for-vscode.html
https://github.com/github/codeql/blob/master/docs/query-metadata-style-guide.md#metadata-area
https://github.com/github/codeql/blob/master/docs/query-metadata-style-guide.md#metadata-area
https://github.com/github/codeql

Learning CodeQL, Release 1.24

Property

Value

Description

Q@description

<text>

A sentence or short paragraph to
describe the purpose of the query
and why the result is useful or im-
portant. The description is writ-
ten in plain text, and uses sin-
gle quotes (') to enclose code el-
ements.

@id

<text>

A sequence of words composed of
lowercase letters or digits, delim-
ited by / or -, identifying and clas-
sifying the query. Each query must
have a unique ID. To ensure this, it
may be helpful to use a fixed struc-
ture for each ID. For example, the
standard LGTM queries have the
following format: <language>/
<brief-description>.

Q@kind

problem
path-problem

Identifies the query is an alert
(Gkind problem) or a path
(@kind path-problem). For fur-
ther information on these query
types, see About CodeQL queries.

@name

<text>

A statement that defines the label
of the query. The name is writ-
ten in plain text, and uses sin-
gle quotes (') to enclose code el-
ements.

Qtags

correctness

maintainability

readability

security

These tags group queries together
in broad categories to make it eas-
ier to search for them and iden-
tify them. In addition to the com-
mon tags listed here, there are also
a number of more specific cate-
gories. For more information, see
the Query metadata style guide.

O@precision

medium
high
very-high

Indicates the percentage of query
results that are true positives
(as opposed to false positive
results).dThis, along with the
Oproblem.severity property,
determines whether the results
are displayed by default on LGTM.

@problem.severity

error

warning

recommendation

Defines the level of severity of
any alerts generated by the query.
This, along with the @precision
property, determines whether the
results are displayed by default on
LGTM.

2.2. Metadata for CodeQL queries

29

https://github.com/github/codeql/blob/master/docs/query-metadata-style-guide.md#query-tags-tags

Learning CodeQL, Release 1.24

2.2.3 Additional properties for filter queries

Filter queries are used to define additional constraints to limit the results that are returned by other queries. A
filter query must have the same @kind property as the query whose results it is filtering. No additional metadata
properties are required.

2.2.4 Example

Here is the metadata for one of the standard Java queries:

For more examples of query metadata, see the standard CodeQL queries in our GitHub repository.

2.3 Query help files

Query help files tell users the purpose of a query, and recommend how to solve the potential problem the query
finds.

This topic provides detailed information on the structure of query help files. For more information about how to
write useful query help in a style that is consistent with the standard CodeQL queries, see the Query help style
guide on GitHub.

Note

You can access the query help for CodeQL queries by visiting the Built-in query pages. You can also
access the raw query help files in the GitHub repository. For example, see the JavaScript security
queries and C/C++ critical queries.

For queries run by default on LGTM, there are several different ways to access the query help. For
further information, see Where do I see the query help for a query on LGTM? in the LGTM user help.

2.3.1 Overview

Each query help file provides detailed information about the purpose and use of a query. When you write your
own queries, we recommend that you also write query help files so that other users know what the queries do,
and how they work.

30 Chapter 2. CodeQL queries

https://github.com/github/codeql
https://github.com/github/codeql/blob/master/docs/query-help-style-guide.md
https://github.com/github/codeql/blob/master/docs/query-help-style-guide.md
https://help.semmle.com/wiki/display/QL/Built-in+queries
https://github.com/github/codeql
https://github.com/github/codeql/tree/master/javascript/ql/src/Security
https://github.com/github/codeql/tree/master/javascript/ql/src/Security
https://github.com/github/codeql/tree/master/cpp/ql/src/Critical
https://lgtm.com/help/lgtm/query-help#where-query-help-in-lgtm

Learning CodeQL, Release 1.24

2.3.2 Structure

Query help files are written using a custom XML format, and stored in a file with a . ghelp extension. Query help
files must have the same base name as the query they describe, and must be located in the same directory. The
basic structure is as follows:

<IDOCTYPE qhelp SYSTEM "qhelp.dtd">
<ghelp>

CONTAINS one or more section-level elements
</qhelp>

The header and single top-level ghelp element are both mandatory. The following sections explain additional
elements that you may include in your query help files.

2.3.3 Section-level elements

Section-level elements are used to group the information in the help file into sections. Many sections have a
heading, either defined by a title attribute or a default value. The following section-level elements are optional
child elements of the ghelp element.

Element | Attributes Children | Purpose of section
example | None Any Demonstrate an example of code that violates the rule implemented
block by the query with guidance on how to fix it. Default heading.
element
fragment] None Any See Query help inclusion below. No heading.
block
element
hr None None A horizontal rule. No heading.
include | src The query | None Include a query help file at the location of this element. See Query
help file to in- help inclusion below. No heading.
clude.
overview None Any Overview of the purpose of the query. Typically this is the first sec-
block tion in a query document. No heading.
element
recommen|d Aoimn Any Recommend how to address any alerts that this query identifies.
block Default heading.
element
referende®done 1i ele- | Reference list. Typically this is the last section in a query document.
ments Default heading.
section | title Title of | Any General-purpose section with a heading defined by the title at-
the section block tribute.
element
semmleNot&one Any Implementation notes about the query. This section is used only
block for queries that implement a rule defined by a third party. Default
element | heading.

2.3. Query help files 31

Learning CodeQL, Release 1.24

2.3.4 Block elements

The following elements are optional child elements of the section, example, fragment,drecommendation,
overview, and semmleNotes elements.

Element Attributes Children Purpose of block
blockquoteNone Any block ele- | Display a quoted paragraph.
ment
img None Display an image. The content of the im-
src The image file to include. age is in a separate image file.
alt Text for the images alt text.
height Optional, height of the
image.
width Optional, the width of the
image.
include | src The query help file to in- | None Include a query help file at the location of
clude. this element. See Query help inclusion be-
low for more information.
ol None 1i Display an ordered list. See List elements
below.
p None Any inline con- | Display a paragraph, used as in HTML files.
tent
pre None Text Display text in a monospaced font with
preformatted whitespace.
sample Text Display sample code either defined as
nested text in the sample element or de-
.lan.guage The language of the fined in the src file specified. When src
in-line code sample. . o .
is specified, the language is inferred from
src Optional, the file containing the file extension. If src is omitted, then
the sample code. language must be provided and the sample
code provided as nested text.
table None tbody Display a table. See Tables below.
ul None 1i Display an unordered list. See List ele-
ments below.
warning | None Text Display a warning that will be displayed
very visibly on the resulting page. Such
warnings are sometimes used on queries
that are known to have low precision for
many code bases; such queries are often
disabled by default.

2.3.5 List elements

Query help files support two types of block elements for lists: ul and ol. Both block elements support only one
child elements of the type 1i. Each 1i element contains either inline content or a block element.

32

Chapter 2. CodeQL queries

Learning CodeQL, Release 1.24

2.3.6 Table elements

The table block element is used to include a table in a query help file. Each table includes a number of rows,
each of which includes a number of cells. The data in the cells will be rendered as a grid.

Element Attributes Children Purpose
tbody None tr Defines the top-level ele-
ment of a table.
tr None Defines one row of a ta-
th ble.
td
td None Any inline content Defines one cell of a table
TOW.
th None Any inline content Defines one header cell
of a table row.

2.3.7 Inline content

Inline content is used to define the content for paragraphs, list items, table cells, and similar elements. Inline
content includes text in addition to the inline elements defined below:

2.3. Query help files 33

Learning CodeQL, Release 1.24

Element

Attributes

Children

Purpose

a

href The URL of the link.

text

Defines hyperlink. When
a user selects the child
text, they will be redi-
rected to the given URL.

None

Inline content

Defines content that
should be displayed as
bold face.

code

None

Inline content

Defines content rep-
resenting code. It is
typically shown in a
monospace font.

em

None

Inline content

Defines content that
should be emphasized,
typically by italicizing it.

None

Inline content

Defines content that
should be displayed as
italics.

img

src
alt
height
width

None

Display an image. See
the description above in
Block elements.

strong

None

Inline content

Defines content that
should be rendered more
strongly, typically using
bold face.

sub

None

Inline content

Defines content that
should be rendered as
subscript.

sup

None

Inline content

Defines content that
should be rendered
asasuperscript.

tt

None

Inline content

Defines content that
should be displayed with
a monospace font.

2.3.8 Query help inclusion

To reuse content between different help topics, you can store shared content in one query help file and then
include it in a number of other query help files using thedinclude element. The shared content can be stored
either in the same directory as the including files, or indASEMMLE_DIST/docs/include.

Thedinclude element can be used as a section or block element. The content of the query help file defined by
thedsrc attribute must contain elements that are appropriate to the location of thedinclude element.

34

Chapter 2. CodeQL queries

Learning CodeQL, Release 1.24

Section-level include elements

Section-level include elements can be located beneath the top-level ghelp element. For example, in
StoredXSS.qhelp, a full query help file is reused:

<ghelp>
<include src="XSS.ghelp" />
</ghelp>

In this example, thedXSS.qghelp file must conform to the standard for a full query help file as described above.
That is, thedghelp element may only contain non-fragment, section-level elements.
Block-level include elements

Block-level include elements can be included beneath section-level elements. For example, an include element
is used beneath the overview section in ThreadUnsafelCryptoTransform.qhelp:

<ghelp>
<overview>
<include src="ThreadUnsafeICryptoTransformOverview.ghelp" />
</overview>

</ghelp>

Thedincluded file, ThreadUnsafelCryptoTransformOverview.ghelp, may only contain one or more fragment sec-
tions. For example:

<!DOCTYPE qhelp SYSTEM "qhelp.dtd">
<ghelp>
<fragment>
<p>

</p>
</fragment>
</qhelp>

2.4 Defining the results of a query

You can control how analysis results are displayed in source code by modifying a querys select statement.

2.4.1 About query results

The information contained in the results of a query is controlled by the select statement. Part of the process of
developing a useful query is to make the results clear and easy for other users to understand. When you write
your own queries in the query console or in the CodeQL extension for VS Code there are no constraints on what
can be selected. However, if you want to use a query to create alerts in LGTM or generate valid analysis results
using the CodeQL CLI, youll need to make the select statement report results in the required format. You must
also ensure that the query has the appropriate metadata properties defined. This topic explains how to write your
select statement to generate helpful analysis results.

2.4. Defining the results of a query 35

https://github.com/github/codeql/blob/master/csharp/ql/src/Security%20Features/CWE-079/StoredXSS.qhelp
https://github.com/github/codeql/blob/master/csharp/ql/src/Security%20Features/CWE-079/XSS.qhelp
https://github.com/github/codeql/blob/master/csharp/ql/src/Likely%20Bugs/ThreadUnsafeICryptoTransform.qhelp
https://github.com/github/codeql/blob/master/csharp/ql/src/Likely%20Bugs/ThreadUnsafeICryptoTransformOverview.qhelp
https://help.semmle.com/codeql/codeql-for-vscode.html
https://help.semmle.com/codeql/codeql-cli.html

Learning CodeQL, Release 1.24

2.4.2 Overview

Alert queries must have the property @kind problem defined in their metadata. For further information, see
Metadata for CodeQL queries. In their most basic form, the select statement must select two columns:

* Elementa code element thats identified by the query. This defines the location of the alert.
* Stringa message to display for this code element, describing why the alert was generated.

If you look at some of the LGTM queries, youll see that they can select extra element/string pairs, which are
combined with $@ placeholder markers in the message to form links. For example, Dereferenced variable may be
null (Java), or Duplicate switch case (JavaScript).

Note

An in-depth discussion of select statements for path queries is not included in this topic. However,
you can develop the string column of the select statement in the same way as for alert queries. For
more specific information about path queries, see Creating path queries.

2.4.3 Developing a select statement

Heres a simple query that uses the standard CodeQL CodeDuplication.qll library to identify similar files.

Basic select statement

import java
import external.CodeDuplication

from File f, File other, int percent
where similarFiles(f, other, percent)
select f, "This file is similar to another file."

This basic select statement has two columns:
1. Element to display the alert on: f corresponds to File.

2. String message to display: "This file is similar to another file."

lle/gradle 9769c9f | 26results

PropertiesRenderer This file is similar to another file.

BlocksRenderer This file is similar to another file.

Including the name of the similar file

The alert message defined by the basic select statement is constant and doesnt give users much information. Since
the query identifies the similar file (other), its easy to extend the select statement to report the name of the
similar file. For example:

36 Chapter 2. CodeQL queries

https://lgtm.com/query/rule:1954750296/lang:java/
https://lgtm.com/query/rule:1954750296/lang:java/
https://lgtm.com/query/rule:7890077/lang:javascript/

Learning CodeQL, Release 1.24

select f, "This file is similar to " + other.getBaseName()

1. Element: f as before.

2. String message: "This file is similar to "the string text is combined with the file name for the
other, similar file, returned by getBaseName ().

9769c9f 56 results
PropertiesRenderer This file is similar to BlocksRenderer
BlocksRenderer This file is similar to PropertiesRenderer

While this is more informative than the original select statement, the user still needs to find the other file manually.

Adding a link to the similar file

You can use placeholders in the text of alert messages to insert additional information, such as links to the similar
file. Placeholders are defined using $@, and filled using the information in the next two columns of the select
statement. For example, this select statement returns four columns:

select f, "This file is similar to $@.", other, other.getBaseName()

1. Element: f as before.

2. String message: "This file is similar to $@."the string text now includes a placeholder, which will
display the combined content of the next two columns.

3. Element for placeholder: other corresponds to the similar file.
4. String text for placeholder: the short file name returned by other.getBaseName ().

When the alert message is displayed, the $@ placeholder is replaced by a link created from the contents of the
third and fourth columns defined by the select statement.

If you use the $@ placeholder marker multiple times in the description text, then the Nth use is replaced by a
link formed from columns 2N+2 and 2N+3. If there are more pairs of additional columns than there are place-
holder markers, then the trailing columns are ignored. Conversely, if there are fewer pairs of additional columns
than there are placeholder markers, then the trailing markers are treated as normal text rather than placeholder
markers.

Adding details of the extent of similarity

You could go further and change the select statement to report on the similarity of content in the two files, since
this information is already available in the query. For example:

select f, percent + ", of the lines in " + f.getBaseName() + " are similar to lines in $@.", other,
— other.getBaseName ()

2.4. Defining the results of a query 37

Learning CodeQL, Release 1.24

The new elements added here dont need to be clickable, so we added them directly to the description string.

g-"—:—.-::le-gl'adle 9769c9f 56 results View as: Alert
BlocksRenderer 84% of the lines in BlocksRenderer are similar to lines in
PropertiesRenderer 84% of the lines in PropertiesRenderer are similar to lines in

2.4.4 Further reading

* CodeQL repository

2.5 Providing locations in CodeQL queries

CodeQL includes mechanisms for extracting the location of elements in a codebase. Use these mechanisms when
writing custom CodeQL queries and libraries to help display information to users.

2.5.1 About locations

When displaying information to the user, LGTM needs to be able to extract location information from the results
of a query. In order to do this, all QL classes which can provide location information should do this by using one
of the following mechanisms:

* Providing URLs
* Providing location information
e Using extracted location information
This list is in priority order, so that the first available mechanism is used.
Note

Since QL is a relational language, there is nothing to enforce that each entity of a QL class is mapped
to precisely one location. This is the responsibility of the designer of the library (or the extractor, in
the case of the third option below). If entities are assigned no location at all, users will not be able to
click through from query results to the source code viewer. If multiple locations are assigned, results
may be duplicated.

Providing URLs

A custom URL can be provided by defining a QL predicate returning string with the name getURL - note that
capitalization matters, and no arguments are allowed. For example:

class Jiralssue extends ExternalData {
JiraIssue() {

(continues on next page)

38 Chapter 2. CodeQL queries

https://github.com/github/codeql

Learning CodeQL, Release 1.24

(continued from previous page)

getDataPath() = "Jiralssues.csv"

string getKey() {
result = getField(0)
}

string getURL() {
result = "http://mycompany.com/jira/" + getKey()
}

File URLs

LGTM supports the display of URLs which define a line and column in a source file.

The schema is file://, which is followed by the absolute path to a file, followed by four numbers separated by
colons. The numbers denote start line, start column, end line and end column. Both line and column numbers
are 1-based, for example:

e file://opt/src/my/file.java:0:0:0:0 is used to link to an entire file.

e file:///opt/src/my/file.java:1:1:2:1 denotes the location that starts at the beginning of the file
and extends to the first character of the second line (the range is inclusive).

e file:///opt/src/my/file.java:1:0:1:0 is taken, by convention, to denote the entire first line of the
file.

By convention, the location of an entire file may also be denoted by a file:// URL without trailing numbers.
Optionally, the location within a file can be denoted using three numbers to define the start line number, character
offset and character length of the location respectively. Results of these types are not displayed in LGTM.

Other types of URL

The following, less-common types of URL are valid but are not supported by LGTM and will be omitted from any
results:

e HTTP URLs are supported in some client applications. For an example, see the code snippet above.

* Folder URLs can be useful, for example to provide folder-level metrics. They may use a file URL, for
example file:///opt/src:0:0:0:0, but they may also start with a scheme of folder://, and no trailing
numbers, for example folder:///opt/src.

* Relative file URLs are like normal file URLs, but start with the scheme relative://. They are typically only
meaningful in the context of a particular database, and are taken to be implicitly prefixed by the databases
source location. Note that, in particular, the relative URL of a file will stay constant regardless of where the
database is analyzed. It is often most convenient to produce these URLs as input when importing external
information; selecting one from a QL class would be unusual, and client applications may not handle it
appropriately.

2.5. Providing locations in CodeQL queries 39

Learning CodeQL, Release 1.24

Providing location information

If no getURL () member predicate is defined, a QL class is checked for the presence of a member predicate called
hasLocationInfo(..). This can be understood as a convenient way of providing file URLs (see above) without
constructing the long URL string in QL. hasLocationInfo(..) should be a predicate, its first column must be
string-typed (it corresponds to the path portion of a file URL), and it must have an additional 3 or 4 int-typed
columns, which are interpreted like a trailing group of three or four numbers on a file URL.

For example, let us imagine that the locations for methods provided by the extractor extend from the first character
of the method name to the closing curly brace of the method body, and we want to fix them to ensure that only
the method name is selected. The following code shows two ways of achieving this:

class MyMethod extends Method {
// The locations from the database, which we want to modify.
Location getLocation() { result = super.getLocation() }

/* First member predicate: Construct a URL for the desired location. */
string getURL() {

exists(Location loc | loc = this.getLocation() |

result = "file://" + loc.getFile().getFullName() +

loc.getStartLine() +
loc.getStartColumn() +
loc.getStartLine() +
(loc.getStartColumn() + getName().length() - 1)

+ o+ o+ o+

/* Second member predicate: Define hasLocationInfo. This will be more
efficient (it avoids constructing long strings), and will
only be used if getURL() is not defined. */
predicate hasLocationInfo(string path, int sl, int sc, int el, int ec) {
exists(Location loc | loc = this.getLocation() |
path = loc.getFile() .getFullName() and
sl = loc.getStartLine() and
sc = loc.getStartColumn() and

el = sl and
ec = sc + getName().length() - 1

Using extracted location information

Finally, if the above two predicates fail, client applications will attempt to call a predicate called getLocation()
with no parameters, and try to apply one of the above two predicates to the result. This allows certain locations
to be put into the database, assigned identifiers, and picked up.

By convention, the return value of the getLocation() predicate should be a class called Location, and it should
define a version of hasLocationInfo(..) (or getURL(), though the former is preferable). If the Location class
does not provide either of these member predicates, then no location information will be available.

40 Chapter 2. CodeQL queries

Learning CodeQL, Release 1.24

2.5.2 The toString() predicate

All classes except those that extend primitive types, must provide a string toString() member predicate. The
query compiler will complain if you dont. The uniqueness warning, noted above for locations, applies here too.

2.5.3 Further reading

¢ CodeQL repository

2.6 About data flow analysis

Data flow analysis is used to compute the possible values that a variable can hold at various points in a program,
determining how those values propagate through the program and where they are used.

2.6.1 Overview

Many CodeQL security queries implement data flow analysis, which can highlight the fate of potentially malicious
or insecure data that can cause vulnerabilities in your code base. These queries help you understand if data is
used in an insecure way, whether dangerous arguments are passed to functions, or whether sensitive data can
leak. As well as highlighting potential security issues, you can also use data flow analysis to understand other
aspects of how a program behaves, by finding, for example, uses of uninitialized variables and resource leaks.

The following sections provide a brief introduction to data flow analysis with CodeQL.
See the following tutorials for more information about analyzing data flow in specific languages:
* Analyzing data flow in C/C++
* Analyzing data flow in C#
* Analyzing data flow in Java
* Analyzing data flow in JavaScript/TypeScript
* Analyzing data flow and tracking tainted data in Python
Note

Data flow analysis is used extensively in path queries. To learn more about path queries, see Creating
path queries.

2.6.2 Data flow graph

The CodeQL data flow libraries implement data flow analysis on a program or function by modeling its data flow
graph. Unlike the abstract syntax tree, the data flow graph does not reflect the syntactic structure of the program,
but models the way data flows through the program at runtime. Nodes in the abstract syntax tree represent
syntactic elements such as statements or expressions. Nodes in the data flow graph, on the other hand, represent
semantic elements that carry values at runtime.

Some AST nodes (such as expressions) have corresponding data flow nodes, but others (such as if statements)
do not. This is because expressions are evaluated to a value at runtime, whereas if statements are purely a
control-flow construct and do not carry values. There are also data flow nodes that do not correspond to AST
nodes at all.

Edges in the data flow graph represent the way data flows between program elements. For example, in the
expression x || y there are data flow nodes corresponding to the sub-expressions x and y, as well as a data flow

2.6. About data flow analysis 41

https://github.com/github/codeql
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Learning CodeQL, Release 1.24

node corresponding to the entire expression x || y. There is an edge from the node corresponding to x to the
node corresponding tox || y, representing the fact that data may flow from x tox || y (since the expression x
|| y may evaluate to x). Similarly, there is an edge from the node corresponding to y to the node corresponding
tox || y.

Local and global data flow differ in which edges they consider: local data flow only considers edges between
data flow nodes belonging to the same function and ignores data flow between functions and through object
properties. Global data flow, however, considers the latter as well. Taint tracking introduces additional edges
into the data flow graph that do not precisely correspond to the flow of values, but model whether some value at
runtime may be derived from another, for instance through a string manipulating operation.

The data flow graph is computed using classes to model the program elements that represent the graphs nodes.
The flow of data between the nodes is modeled using predicates to compute the graphs edges.

Computing an accurate and complete data flow graph presents several challenges:

It isnt possible to compute data flow through standard library functions, where the source code is unavail-
able.

* Some behavior isnt determined until run time, which means that the data flow library must take extra steps
to find potential call targets.

» Aliasing between variables can result in a single write changing the value that multiple pointers point to.
* The data flow graph can be very large and slow to compute.
To overcome these potential problems, two kinds of data flow are modeled in the libraries:

* Local data flow, concerning the data flow within a single function. When reasoning about local data flow,
you only consider edges between data flow nodes belonging to the same function. It is generally sufficiently
fast, efficient and precise for many queries, and it is usually possible to compute the local data flow for all
functions in a CodeQL database.

* Global data flow, effectively considers the data flow within an entire program, by calculating data flow
between functions and through object properties. Computing global data flow is typically more time and
energy intensive than local data flow, therefore queries should be refined to look for more specific sources
and sinks.

Many CodeQL queries contain examples of both local and global data flow analysis. See the built-in queries for
details.

2.6.3 Normal data flow vs taint tracking

In the standard libraries, we make a distinction between normal data flow and taint tracking. The normal data
flow libraries are used to analyze the information flow in which data values are preserved at each step.

For example, if you are tracking an insecure object x (which might be some untrusted or potentially malicious
data), a step in the program may change its value. So, in a simple process suchasy = x + 1, a normal data flow
analysis will highlight the use of x, but not y. However, since y is derived from x, it is influenced by the untrusted
or tainted information, and therefore it is also tainted. Analyzing the flow of the taint from x to y is known as
taint tracking.

In QL, taint tracking extends data flow analysis by including steps in which the data values are not necessarily
preserved, but the potentially insecure object is still propagated. These flow steps are modeled in the taint-tracking
library using predicates that hold if taint is propagated between nodes.

42 Chapter 2. CodeQL queries

https://help.semmle.com/QL/ql-handbook/types.html#classes
https://help.semmle.com/QL/ql-handbook/predicates.html
https://help.semmle.com/wiki/display/QL/Built-in+queries

Learning CodeQL, Release 1.24

2.6.4 Further reading

* Exploring data flow with path queries

2.7 Creating path queries

You can create path queries to visualize the flow of information through a codebase.

2.7.1 Overview

Security researchers are particularly interested in the way that information flows in a program. Many vulnera-
bilities are caused by seemingly benign data flowing to unexpected locations, and being used in a malicious way.
Path queries written with CodeQL are particularly useful for analyzing data flow as they can be used to track the
path taken by a variable from its possible starting points (source) to its possible end points (sink). To model
paths, your query must provide information about the source and the sink, as well as the data flow steps that
link them.

This topic provides information on how to structure a path query file so you can explore the paths associated with
the results of data flow analysis.

Note

The alerts generated by path queries are displayed by default in LGTM and included in the results
generated using the CodeQL CLI. You can also view the path explanations generated by your path
query directly in LGTM or in the CodeQL extension for VS Code.

To learn more about modeling data flow with CodeQL, see Introduction to data flow. For more language-specific
information on analyzing data flow, see:

* Analyzing data flow in C/C++

* Analyzing data flow in C#

* Analyzing data flow in Java

¢ Analyzing data flow in JavaScript /TypeScript

* Analyzing data flow and tracking tainted data in Python

Path query examples

The easiest way to get started writing your own path query is to modify one of the existing queries. Visit the links
below to see all the built-in path queries:

* C/C++ path queries

* C# path queries

e Java path queries

e JavaScript path queries
* Python path queries

The Security Lab researchers have used path queries to find security vulnerabilities in various open source projects.
To see articles describing how these queries were written, as well as other posts describing other aspects of security
research such as exploiting vulnerabilities, see the GitHub Security Lab website.

2.7. Creating path queries 43

https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://lgtm.com
https://help.semmle.com/codeql/codeql-cli.html
https://lgtm.com/help/lgtm/exploring-data-flow-paths
https://help.semmle.com/codeql/codeql-for-vscode.html
https://help.semmle.com/wiki/label/CCPPOBJ/path-problem
https://help.semmle.com/wiki/label/CSHARP/path-problem
https://help.semmle.com/wiki/label/java/path-problem
https://help.semmle.com/wiki/label/js/path-problem
https://help.semmle.com/wiki/label/python/path-problem
https://securitylab.github.com/research

Learning CodeQL, Release 1.24

2.7.2 Constructing a path query

Path queries require certain metadata, query predicates, and select statement structures. Many of the built-in
path queries included in CodeQL follow a simple structure, which depends on how the language you are analyzing
is modeled with CodeQL.

For C/C++, C#, Java, and JavaScript you should use the following template:

Jk*
* QOkind path-problem

*/

import <language>
import DataFlow::PathGraph

from Configuration config, DataFlow::PathNode source, DataFlow::PathNode sink
where config.hasFlowPath(source, sink)
select sink.getNode(), source, sink, "<message>"

Where:
* DataFlow: :Pathgraph is the path graph module you need to import from the standard CodeQL libraries.
* source and sink are nodes on the path graph, and DataFlow: :PathNode is their type.

* Configuration is a class containing the predicates which define how data may flow between the source
and the sink.

For Python you should use a slightly different template:

VAL
* QOkind path-problem

*/

import python
import semmle.python.security.Paths

from TaintedPathSource source, TaintedPathSink sink
where source.flowsTo(sink)
select sink.getNode(), source, sink, '"<message>"

Where:
* semmle.python.security.Paths is the path graph module imported from the standard CodeQL libraries.

* source and sink are nodes on the path graph, TaintedPathSource source and TaintedPathSink are
their respective types. Note, you do not need to declare a configuration class to define the data flow from
the source to the sink in a Python path query.

The following sections describe the main requirements for a valid path query.

44 Chapter 2. CodeQL queries

https://en.wikipedia.org/wiki/Path_graph

Learning CodeQL, Release 1.24

Path query metadata

Path query metadata must contain the property @kind path-problem-this ensures that query results are inter-
preted and displayed correctly. The other metadata requirements depend on how you intend to run the query.
For more information, see Query metadata.

Generating path explanations

In order to generate path explanations, your query needs to compute a path graph. To do this you need to define
a query predicate called edges in your query. This predicate defines the edge relations of the graph you are
computing, and it is used to compute the paths related to each result that your query generates. You can import
a predefined edges predicate from a path graph module in one of the standard data flow libraries. In addition
to the path graph module, the data flow libraries contain the other classes, predicates, and modules that
are commonly used in data flow analysis. The import statement to use depends on the language that you are
analyzing.

For C/C++, C#, Java, and JavaScript you would use:

import DataFlow::PathGraph

This statement imports the PathGraph module from the data flow library (DataFlow.qll), in which edges is
defined.

For Python, the Paths module contains the edges predicate:

import semmle.python.security.Paths

You can also import libraries specifically designed to implement data flow analysis in various common frameworks
and environments, and many additional libraries are included with CodeQL. To see examples of the different
libraries used in data flow analysis, see the links to the built-in queries above or browse the standard libraries.

For all languages, you can also optionally define a nodes query predicate, which specifies the nodes of the path
graph that you are interested in. If nodes is defined, only edges with endpoints defined by these nodes are
selected. If nodes is not defined, you select all possible endpoints of edges.

Defining your own edges predicate

You can also define your own edges predicate in the body of your query. It should take the following form:

query predicate edges(PathNode a, PathNode b) {
/*% Logical conditions which hold if “(a,b)’ is an edge in the data flow graph */
}

For more examples of how to define an edges predicate, visit the standard CodeQL libraries and search for edges.

Declaring sources and sinks

You must provide information about the source and sink in your path query. These are objects that correspond
to the nodes of the paths that you are exploring. The name and the type of the source and the sink must
be declared in the from statement of the query, and the types must be compatible with the nodes of the graph
computed by the edges predicate.

2.7. Creating path queries 45

https://help.semmle.com/QL/learn-ql/writing-queries/introduction-to-queries.html#query-metadata
https://en.wikipedia.org/wiki/Path_graph
https://help.semmle.com/QL/ql-handbook/queries.html#query-predicates
https://help.semmle.com/QL/ql-libraries.html
https://help.semmle.com/QL/ql-libraries.html

Learning CodeQL, Release 1.24

If you are querying C/C++, C#, Java, or JavaScript code (and you have used import DataFlow::PathGraph in
your query), the definitions of the source and sink are accessed via the Configuration class in the data flow
library. You should declare all three of these objects in the from statement. For example:

from Configuration config, DataFlow::PathNode source, DataFlow::PathNode sink

The configuration class is accessed by importing the data flow library. This class contains the predicates which
define how data flow is treated in the query:

e isSource() defines where data may flow from.
e isSink() defines where data may flow to.

For further information on using the configuration class in your analysis see the sections on global data flow in
Analyzing data flow in C/C++ and Analyzing data flow in C#.

You can also create a configuration for different frameworks and environments by extending the Configuration
class. For further information, see defining a class.

If you are querying Python code (and you have used import semmle.python.security.Paths in your query)
you should declare TaintedPathSource source, TaintedPathSink sink in your from statement. You do
not need to declare a Configuration class as the definitions of the TaintedPathSource and TaintedPathSink
contain all of the type information that is required:

from TaintedPathSource source, TaintedPathSink sink

You can extend your query by adding different sources and sinks by either defining them in the query, or by
importing predefined sources and sinks for specific frameworks and libraries. See the Python path queries for
further details.

Defining flow conditions

The where clause defines the logical conditions to apply to the variables declared in the from clause to generate
your results. This clause can use aggregations, predicates, and logical formulas to limit the variables of interest
to a smaller set which meet the defined conditions.

When writing a path queries, you would typically include a predicate that holds only if data flows from the source
to the sink.

For C/C++, C#, Java or JavaScript, you would use the hasFlowPath predicate to define flow from the source
to the sink for a given Configuration:

where config.hasFlowPath(source, sink)

For Python, you would simply use the f1lowsTo predicate to define flow from the source to the sink:

where source.flowsTo(sink)

Select clause

Select clauses for path queries consist of four columns, with the following structure:

select element, source, sink, string

46 Chapter 2. CodeQL queries

https://help.semmle.com/QL/ql-handbook/types.html#defining-a-class
https://help.semmle.com/wiki/label/python/path-problem
https://help.semmle.com/QL/ql-handbook/expressions.html#aggregations
https://help.semmle.com/QL/ql-handbook/predicates.html
https://help.semmle.com/QL/ql-handbook/formulas.html

Learning CodeQL, Release 1.24

The element and string columns represent the location of the alert and the alert message respectively, as ex-
plained in Introduction to writing queries. The second and third columns, source and sink, are nodes on the path
graph selected by the query. Each result generated by your query is displayed at a single location in the same way
as an alert query. Additionally, each result also has an associated path, which can be viewed in LGTM or in the
CodeQL extension for VS Code.

The element that you select in the first column depends on the purpose of the query and the type of issue that
it is designed to find. This is particularly important for security issues. For example, if you believe the source
value to be globally invalid or malicious it may be best to display the alert at the source. In contrast, you should
consider displaying the alert at the sink if you believe it is the element that requires sanitization.

The alert message defined in the final column in the select statement can be developed to give more detail about
the alert or path found by the query using links and placeholders. For more information, see Defining the results

of a query.
Further reading
* Exploring data flow with path queries

* CodeQL repository

2.8 Troubleshooting query performance

Improve the performance of your CodeQL queries by following a few simple guidelines.

2.8.1 About query performance

This topic offers some simple tips on how to avoid common problems that can affect the performance of your
queries. Before reading the tips below, it is worth reiterating a few important points about CodeQL and the QL
language:

* CodeQL predicates and classes are evaluated to database tables. Large predicates generate large tables with

many rows, and are therefore expensive to compute.

* The QL language is implemented using standard database operations and relational algebra (such as join,
projection, and union). For further information about query languages and databases, see About the QL
language.

* Queries are evaluated bottom-up, which means that a predicate is not evaluated until all of the predicates
that it depends on are evaluated. For more information on query evaluation, see Evaluation of QL programs.

2.8.2 Performance tips

Follow the guidelines below to ensure that you dont get tripped up by the most common CodeQL performance
pitfalls.

Eliminate cartesian products

The performance of a predicate can often be judged by considering roughly how many results it has. One way of
creating badly performing predicates is by using two variables without relating them in any way, or only relating
them using a negation. This leads to computing the Cartesian product between the sets of possible values for
each variable, potentially generating a huge table of results. This can occur if you dont specify restrictions on

2.8. Troubleshooting query performance 47

https://help.semmle.com/codeql/codeql-for-vscode.html
https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql
https://help.semmle.com/QL/ql-handbook/predicates.html
https://help.semmle.com/QL/ql-handbook/types.html#classes
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Relational_algebra
https://help.semmle.com/QL/learn-ql/about-ql.html
https://help.semmle.com/QL/learn-ql/about-ql.html
https://help.semmle.com/QL/ql-handbook/evaluation.html
https://en.wikipedia.org/wiki/Cartesian_product

Learning CodeQL, Release 1.24

your variables. For instance, consider the following predicate that checks whether a Java method m may access a
field £:

predicate mayAccess(Method m, Field f) {
f.getAnAccess() .getEnclosingCallable() = m
or
not exists(m.getBody())

}

The predicate holds if m contains an access to £, but also conservatively assumes that methods without bodies (for
example, native methods) may access any field.

However, if m is a native method, the table computed by mayAccess will contain a row m, £ for all fields £ in the
codebase, making it potentially very large.

This example shows a similar mistake in a member predicate:

class Foo extends Class {

// BAD! Does mnot use this
Method getToString() {
result.getName() = "ToString"

}

Note that while getToString() does not declare any parameters, it has two implicit parameters, result and
this, which it fails to relate. Therefore, the table computed by getToString() contains a row for every combi-
nation of result and this. That is, a row for every combination of a method named "ToString" and an instance
of Foo. To avoid making this mistake, this should be restricted in the member predicate getToString() on the
class Foo.

Use specific types

Types provide an upper bound on the size of a relation. This helps the query optimizer be more effective, so its
generally good to use the most specific types possible. For example:

predicate foo(LoggingCall e)

is preferred over:

predicate foo(Expr e)

From the type context, the query optimizer deduces that some parts of the program are redundant and removes
them, or specializes them.

Determine the most specific types of a variable

If you are unfamiliar with the library used in a query, you can use CodeQL to determine what types an entity has.
There is a predicate called getAQ1lClass (), which returns the most specific QL types of the entity that it is called
on.

48 Chapter 2. CodeQL queries

https://help.semmle.com/QL/ql-handbook/types.html

Learning CodeQL, Release 1.24

For example, if you were working with a Java database, you might use getAQ1Class () on every Expr in a callable
called c:

import java

from Expr e, Callable c

where
c.getDeclaringType () .hasQualifiedName ("my.namespace.name", "MyClass")
and c.getName() = "c"

and e.getEnclosingCallable() = ¢
select e, e.getAQlClass()

The result of this query is a list of the most specific types of every Expr in that function. You will see multiple
results for expressions that are represented by more than one type, so it will likely return a very large table of
results.

Use getAQlClass() as a debugging tool, but dont include it in the final version of your query, as it slows down
performance.

Avoid complex recursion

Recursion is about self-referencing definitions. It can be extremely powerful as long as it is used appropriately.
On the whole, you should try to make recursive predicates as simple as possible. That is, you should define a base
case that allows the predicate to bottom out, along with a single recursive call:

int depth(Stmt s) {
exists(Callable ¢ | c.getBody() = s | result = 0) // base case
or

result = depth(s.getParent()) + 1 // recursive call
}

Note

The query optimizer has special data structures for dealing with transitive closures. If possible, use a
transitive closure over a simple recursive predicate, as it is likely to be computed faster.

Fold predicates
Sometimes you can assist the query optimizer by folding parts of large predicates out into smaller predicates.
The general principle is to split off chunks of work that are:

* linear, so that there is not too much branching.

« tightly bound, so that the chunks join with each other on as many variables as possible.

In the following example, we explore some lookups on two Elements:

predicate similar(Element el, Element e2) {

el.getName() = e2.getName() and

el.getFile() = e2.getFile() and

el.getLocation() .getStartLine() = e2.getLocation().getStartLine()
}

2.8. Troubleshooting query performance 49

https://help.semmle.com/QL/ql-handbook/recursion.html
https://help.semmle.com/QL/ql-handbook/recursion.html#transitive-closures

Learning CodeQL, Release 1.24

Going from Element -> File and Element -> Location -> StartLine is linear—that is, there is only one
File, Location, etc. for each Element.

However, as written it is difficult for the optimizer to pick out the best ordering. Joining first and then doing the
linear lookups later would likely result in poor performance. Generally, we want to do the quick, linear parts first,
and then join on the resultant larger tables. We can initiate this kind of ordering by splitting the above predicate
as follows:

predicate locInfo(Element e, string name, File f, int startLine) {
name = e.getName() and
f = e.getFile() and
startLine = e.getLocation().getStartLine()

predicate sameLoc(Element el, Element e2) {
exists(string name, File f, int startLine |
locInfo(el, name, f, startLine) and
locInfo(e2, name, f, startLine)

Now the structure we want is clearer. Weve separated out the easy part into its own predicate locInfo, and the
main predicate sameLoc is just a larger join.

2.8.3 Further reading
* QL language reference
¢ CodeQL tools

* About CodeQL queries: CodeQL queries are used to analyze code for issues related to security, correctness,
maintainability, and readability.

e Metadata for CodeQL queries: Metadata tells users important information about CodeQL queries. You must
include the correct query metadata in a query to be able to view query results in source code.

* Query help files: Query help files tell users the purpose of a query, and recommend how to solve the potential
problem the query finds.

* Defining the results of a query: You can control how analysis results are displayed in source code by modifying
a querys select statement.

* Providing locations in CodeQL queries: CodeQL includes mechanisms for extracting the location of elements
in a codebase. Use these mechanisms when writing custom CodeQL queries and libraries to help display
information to users.

* About data flow analysis: Data flow analysis is used to compute the possible values that a variable can hold
at various points in a program, determining how those values propagate through the program and where
they are used.

* Creating path queries: You can create path queries to visualize the flow of information through a codebase.

* Troubleshooting query performance: Improve the performance of your CodeQL queries by following a few
simple guidelines.

50 Chapter 2. CodeQL queries

https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

CHAPTER

THREE

CODEQL FOR C AND C++

Experiment and learn how to write effective and efficient queries for CodeQL databases generated from C and
C++ codebases.

3.1 Basic query for C and C++4 code

Learn to write and run a simple CodeQL query using LGTM.

3.1.1 About the query

The query were going to run performs a basic search of the code for if statements that are redundant, in the
sense that they have an empty then branch. For example, code such as:

if (error) { }

3.1.2 Running the query
1. In the main search box on LGTM.com, search for the project you want to query. For tips, see Searching.
2. Click the project in the search results.
3. Click Query this project.
This opens the query console. (For information about using this, see Using the query console.)
Note

Alternatively, you can go straight to the query console by clicking Query console (at the top
of any page), selecting C/C++ from the Language drop-down list, then choosing one or more
projects to query from those displayed in the Project drop-down list.

4. Copy the following query into the text box in the query console:

import cpp

from IfStmt ifstmt, Block block

where ifstmt.getThen() = block and
block.getNumStmt () = O

select ifstmt, "This 'if' statement is redundant."

51

https://lgtm.com/help/lgtm/searching
https://lgtm.com/help/lgtm/using-query-console

Learning CodeQL, Release 1.24

LGTM checks whether your query compiles and, if all is well, the Run button changes to green to indicate
that you can go ahead and run the query.

. Click Run.

The name of the project you are querying, and the ID of the most recently analyzed commit to the project,
are listed below the query box. To the right of this is an icon that indicates the progress of the query

operation:
Progress: 22%
S

Note
Your query is always run against the most recently analyzed commit to the selected project.

The query will take a few moments to return results. When the query completes, the results are displayed
below the project name. The query results are listed in two columns, corresponding to the two expressions
in the select clause of the query. The first column corresponds to the expression ifstmt and is linked to
the location in the source code of the project where ifstmt occurs. The second column is the alert message.

Example query results

Note

An ellipsis () at the bottom of the table indicates that the entire list is not displayedclick it to
show more results.

. If any matching code is found, click a link in the i fstmt column to view the if statement in the code viewer.

The matching if statement is highlighted with a yellow background in the code viewer. If any code in the
file also matches a query from the standard query library for that language, you will see a red alert message
at the appropriate point within the code.

About the query structure

After the initial import statement, this simple query comprises three parts that serve similar purposes to the
FROM, WHERE, and SELECT parts of an SQL query.

52

Chapter 3. CodeQL for C and C++

https://lgtm.com/query/4242591143131494898/

Learning CodeQL, Release 1.24

Query part

Purpose

Details

import cpp

Imports the standard CodeQL li-
braries for C/C++.

Every query begins with one or
more import statements.

from IfStmt ifstmt, Block
block

Defines the variables for the query.
Declarations are of the form:
<type> <variable name>

We use:
e an IfStmt variable for if
statements
e a Block variable for the
statement block

where ifstmt.getThen()
= block and block.
getNumStmt () = 0

Defines a condition on the vari-
ables.

ifstmt.getThen() = block re-
lates the two variables. The block
must be the then branch of the if
statement.

block.getNumStmt () = O states
that the block must be empty (that
is, it contains no statements).

select ifstmt, "This 'if'
statement is redundant."

Defines what to report for each
match.

select statements for queries that
are used to find instances of
poor coding practice are always
in the form: select <program

element>, "<alert message>"

Reports the resulting if statement
with a string that explains the
problem.

3.1.3 Extend the query

Query writing is an inherently iterative process. You write a simple query and then, when you run it, you discover
examples that you had not previously considered, or opportunities for improvement.

Remove false positive results

Browsing the results of our basic query shows that it could be improved. Among the results you are likely to find
examples of if statements with an else branch, where an empty then branch does serve a purpose. For example:

if (...) {

} else if (!strcmp(option, "-verbose") {

// nothing to do - handled earlier

} else {

error(”unrecognized option");

}

In this case, identifying the if statement with the empty then branch as redundant is a false positive. One solution
to this is to modify the query to ignore empty then branches if the if statement has an else branch.

To exclude if statements that have an else branch:

1. Extend the where clause to include the following extra condition:

3.1. Basic query for C and C++4 code

53

Learning CodeQL, Release 1.24

and not ifstmt.hasElse()

The where clause is now:

where ifstmt.getThen() = block and
block.getNumStmt () = 0 and
not ifstmt.hasElse()

2. Click Run.
There are now fewer results because if statements with an else branch are no longer reported.

See this in the query console

3.1.4 Further reading
* CodeQL queries for C and C++
* Example queries for C and C++
* CodeQL library reference for C and C++
* QL language reference

¢ CodeQL tools

3.2 CodeQL library for C and C++

When analyzing C or C++ code, you can use the large collection of classes in the CodeQL library for C and C++.

3.2.1 About the CodeQL library for C and C++

There is an extensive library for analyzing CodeQL databases extracted from C/C++ projects. The classes in
this library present the data from a database in an object-oriented form and provide abstractions and predicates
to help you with common analysis tasks. The library is implemented as a set of QL modules, that is, files with
the extension .qll. The module cpp.qll imports all the core C/C++ library modules, so you can include the
complete library by beginning your query with:

import cpp

The rest of this topic summarizes the available CodeQL classes and corresponding C/C++ constructs.

3.2.2 Commonly-used library classes

The most commonly used standard library classes are listed below. The listing is broken down by functionality.
Each library class is annotated with a C/C++ construct it corresponds to.

Declaration classes

This table lists Declaration classes representing C/C++ declarations.

54 Chapter 3. CodeQL for C and C++

https://lgtm.com/query/1899933116489579248/
https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Declaration.qll/type.Declaration\protect \T1\textdollar Declaration.html

Learning CodeQL, Release 1.24

int func (const charx* format ,

.
{17

Example syntax CodeQL class Remarks
int var ; GlobalVariable
namespace N { floatvar; } NamespaceVariable
int func (void) { floatvar; | LocalVariable See also Initializer
}
class C{ intvar; } MemberVariable
int func (const char param); Function
TemplateFunction
template < typename T >
void func (T param) ;
FormattingFunction

func < int, float > ();

FunctionTemplatelnstantiation

template < typename T >
func< int, T> () { }

FunctionTemplateSpecialization

MemberFunction
class C{
int func (float param) ;
}
ConstMemberFunction
class C{
int func (float param)
const; };
class C{ virtual int func () | VirtualFunction
{r%X
classC{ C() {} } Constructor
C::operator float () const; | ConversionOperator
classC{ ~C (void) { } }; | Destructor

class C{
C(constD&d) { } };

ConversionConstructor

C&C:: operator= (constC& | CopyAssignmentOperator
)3
C&C :: operator= (C&&); | MoveAssignmentOperator

C:: C(constC&); CopyConstructor
C::C(C&&); MoveConstructor
C:: C (void); NoArgConstructor Default constructor

Continued on next page

3.2. CodeQL library for C and C++

55

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Variable.qll/type.Variable\protect \T1\textdollar GlobalVariable.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Variable.qll/type.Variable\protect \T1\textdollar NamespaceVariable.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Variable.qll/type.Variable\protect \T1\textdollar LocalVariable.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Initializer.qll/type.Initializer\protect \T1\textdollar Initializer.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Variable.qll/type.Variable\protect \T1\textdollar MemberVariable.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar TemplateFunction.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/models/interfaces/FormattingFunction.qll/type.FormattingFunction\protect \T1\textdollar FormattingFunction.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar FunctionTemplateInstantiation.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar FunctionTemplateSpecialization.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar MemberFunction.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar ConstMemberFunction.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar VirtualFunction.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar Constructor.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar ConversionOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar Destructor.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar ConversionConstructor.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar CopyAssignmentOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar MoveAssignmentOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar CopyConstructor.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar MoveConstructor.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Function.qll/type.Function\protect \T1\textdollar NoArgConstructor.html

Learning CodeQL, Release 1.24

Table 1 — continued from previous page

Example syntax CodeQL class Remarks
enum en { vall , val2 } EnumConstant
FriendDecl
friend void func (int);
friend class B ;
LocalEnum
int func (void) {
enumen { vall , val2 }; }
NestedEnum
classC{
enumen {vall , val2 } }
enum class en : short { vall | ScopedEnum
,val2 ¥
AbstractClass
class C{
virtual void func (int
) =0; };

template < int , float >
classCo{ };

ClassTemplateInstantiation

template < > class C < Type >
{1}

FullClassTemplateSpecialization

template < typename T >
classC<T,5> { };

PartialClassTemplateSpecialization

Type func (Parameter) {
+h

int func (void) { class C { | LocalClass
3)
classC{ classD{ }; }; NestedClass
Class

class C{

Type var ;

Type func (Parameter) {

i
struct S { Struct

Type var ; Class

Continued on next page

56

Chapter 3. CodeQL for C and C++

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Enum.qll/type.Enum\protect \T1\textdollar EnumConstant.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/FriendDecl.qll/type.FriendDecl\protect \T1\textdollar FriendDecl.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Enum.qll/type.Enum\protect \T1\textdollar LocalEnum.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Enum.qll/type.Enum\protect \T1\textdollar NestedEnum.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Enum.qll/type.Enum\protect \T1\textdollar ScopedEnum.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar AbstractClass.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar ClassTemplateInstantiation.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar FullClassTemplateSpecialization.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar PartialClassTemplateSpecialization.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar LocalClass.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar NestedClass.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar Class.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Struct.qll/type.Struct\protect \T1\textdollar Struct.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar Class.html

Learning CodeQL, Release 1.24

Table 1 — continued from previous page

Example syntax CodeQL class Remarks
union U { Union
Type varl ; Struct
Type var2 ; }; Class
ProxyClass Appears only in uninstantiated
template < typename T > templates
struct C: T{ };
LocalStruct
int func (void) {
struct S{ }; }
NestedStruct
class C{
struct S{ }; };
int * func (void) { union U | LocalUnion
{313
classC{ unionUA{ }; }; NestedUnion
typedef int T ; TypedefType
LocalTypedefType
int func (void) {
typedef int T ; }
NestedTypedefType
class C{
typedef int T ; };
class V : publicB { }; ClassDerivation
classV : virtual B { }; VirtualClassDerivation
TemplateClass
template < typename T >
class Co{ };
int foo (Type paraml , Type | Parameter
param2) ;
template <typenameT > Tt ; TemplateVariable Since C++14

Statement classes

This table lists subclasses of Stmt representing C/C++ statements.

3.2. CodeQL library for C and C++

57

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Union.qll/type.Union\protect \T1\textdollar Union.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Struct.qll/type.Struct\protect \T1\textdollar Struct.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar Class.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar ProxyClass.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Struct.qll/type.Struct\protect \T1\textdollar LocalStruct.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Struct.qll/type.Struct\protect \T1\textdollar NestedStruct.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Union.qll/type.Union\protect \T1\textdollar LocalUnion.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Union.qll/type.Union\protect \T1\textdollar NestedUnion.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/TypedefType.qll/type.TypedefType\protect \T1\textdollar TypedefType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/TypedefType.qll/type.TypedefType\protect \T1\textdollar LocalTypedefType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/TypedefType.qll/type.TypedefType\protect \T1\textdollar NestedTypedefType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar ClassDerivation.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar VirtualClassDerivation.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar TemplateClass.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Variable.qll/type.Variable\protect \T1\textdollar TemplateVariable.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html

Learning CodeQL, Release 1.24

Example syntax

CodeQL class

Remarks

__asm__ (" movb %bh, (%eax) | AsmStmt Specific to a given CPU instruction

") set

{ Stmt } Block

catch (Parameter) Block CatchBlock

catch (...) Block CatchAnyBlock

goto * labelptr ; ComputedGotoStmt GNU extension; use with LabelLit-
eral

Typei,j; DeclStmt

if (Expr) Stmt else Stmt IfStmt

switch (Expr) { SwitchCase } | SwitchStmt

do Stmt while (Expr) DoStmt

for (DeclStmt ; Expr ; Expr) | ForStmt

Stmt

for (DeclStmt : Expr) Stmt RangeBasedForStmt

while (Expr) Stmt WhileStmt

Expr ; ExprStmt

_try { } __except (Expr) {

}

MicrosoftTryExceptStmt

Structured exception handling
(SEH) under Windows

__try { } __finally { }

MicrosoftTryFinallyStmt

Structured exception handling
(SEH) under Windows

return Expr ; ReturnStmt
case Expr : SwitchCase
try { Stmt } CatchBlock | TryStmt
CatchAnyBlock
FunctionTryStmt

void func (void) try { Stmt }

CatchBlock CatchAnyBlock
; EmptyStmt
break; BreakStmt
continue; ContinueStmt
goto LabelStmt ; GotoStmt
slabel : LabelStmt
float arr [Expr] [Expr]; VlaDeclStmt C99 variable-length array

Expression classes

This table lists subclasses of Expr representing C/C++ expressions.

Example syntax CodeQL class(es) Remarks
{ Expr }
ArrayAggregateLiteral
ClassAggregatelLiteral
Continued on next page
58 Chapter 3. CodeQL for C and C++

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar AsmStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Block.qll/type.Block\protect \T1\textdollar Block.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Block.qll/type.Block\protect \T1\textdollar Block.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar CatchBlock.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Block.qll/type.Block\protect \T1\textdollar Block.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar CatchAnyBlock.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar ComputedGotoStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar LabelLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar LabelLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar IfStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchCase.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar DoStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar ForStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar RangeBasedForStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar WhileStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar ExprStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar MicrosoftTryExceptStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar MicrosoftTryFinallyStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar ReturnStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchCase.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar CatchBlock.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar CatchAnyBlock.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar TryStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar CatchBlock.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar CatchAnyBlock.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar FunctionTryStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar EmptyStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar BreakStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar ContinueStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar LabelStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar GotoStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar LabelStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar VlaDeclStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar ArrayAggregateLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar ClassAggregateLiteral.html

Learning CodeQL, Release 1.24

Table 2 — continued from previous page

template < typename... T >

autosum (T t)

Example syntax CodeQL class(es) Remarks
alignof (Expr) AlignofExprOperator
alignof (Type) AlignofTypeOperator
Expr [Expr] ArrayExpr
__assume (Expr) AssumeExpr Microsoft extension
static_assert (Expr , | StaticAssert
StringLiteral) _Static_assert C++11
(Expr , StringLiteral) Cl11
__noop; BuiltInNoOp Microsoft extension
Expr (Expr) ExprCall

FunctionCall
func (Expr)
instance . func (Expr)
Expr , Expr CommaExpr
if (Type arg = Expr) ConditionDeclExpr
(Type) Expr CStyleCast
const_cast < Type > (Expr) ConstCast
dynamic_cast < Type > (Expr) | DynamicCast
reinterpret_cast < Type > (| ReinterpretCast
Expr)
static_cast < Type > (Expr) StaticCast

FoldExpr Appears only in uninstantiated

templates

{ return (t+ ... + 0
);)
int func (format, ...); FormattingFunctionCall
LambdaExpression C++11
[=] (floatb) -> float
{ return captured *b ; }
BlockExpr Apple extension
~ int (intx, inty) {
{Stmt ; returnx+y; }
void * labelptr = && label ; LabelLiteral GNU extension; use with Comput-
edGotoStmt
%3d %s\n FormatLiteral
Oxdbceffca HexLiteral
0167 OctalLiteral
c CharLiteral
abcdefgh, Lwide StringLiteral

Continued on next page

3.2. CodeQL library for C and C++

59

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar AlignofExprOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar AlignofTypeOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Access.qll/type.Access\protect \T1\textdollar ArrayExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar AssumeExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Element.qll/type.Element\protect \T1\textdollar StaticAssert.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BuiltInOperations.qll/type.BuiltInOperations\protect \T1\textdollar BuiltInNoOp.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Call.qll/type.Call\protect \T1\textdollar ExprCall.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Call.qll/type.Call\protect \T1\textdollar FunctionCall.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar CommaExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar ConditionDeclExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar CStyleCast.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar ConstCast.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar DynamicCast.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar ReinterpretCast.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar StaticCast.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar FoldExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/commons/Printf.qll/type.Printf\protect \T1\textdollar FormattingFunctionCall.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Lambda.qll/type.Lambda\protect \T1\textdollar LambdaExpression.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar BlockExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar LabelLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar ComputedGotoStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar ComputedGotoStmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/commons/Printf.qll/type.Printf\protect \T1\textdollar FormatLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar HexLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar OctalLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar CharLiteral.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Literal.qll/type.Literal\protect \T1\textdollar StringLiteral.html

Learning CodeQL, Release 1.24

Table 2 — continued from previous page

Example syntax CodeQL class(es) Remarks
new Type [Expr] NewArrayExpr
new Type NewExpr
delete [1 Expr; DeleteArrayExpr
delete Expr ; DeleteExpr
noexcept (Expr) NoExceptExpr
Expr = Expr AssignExpr See also Initializer
Expr += Expr
AssignAddExpr
AssignPointerAddExpr
Expr /= Expr AssignDivExpr
Expr *= Expr AssignMulExpr
Expr %= Expr AssignRemExpr
Expr -= Expr
AssignSubExpr
AssignPointerSubExpr
Expr &= Expr AssignAndExpr
Expr <<= Expr AssignLShiftExpr
Expr |= Expr AssignOrExpr
Expr >>= Expr AssignRShiftExpr
Expr ~= Expr AssignXorExpr
Expr + Expr
AddExpr
PointerAddExpr
ImaginaryReal AddExpr C99
ReallmaginaryAddExpr C99
Expr / Expr
DivExpr
ImaginaryDivExpr C99
Expr >? Expr MaxExpr GNU extension
Expr <7 Expr MinExpr GNU extension
Expr * Expr
MulExpr
ImaginaryMulExpr C99
Expr % Expr RemExpr

Continued on next page

60 Chapter 3. CodeQL for C and C++

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar NewArrayExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar NewExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar DeleteArrayExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar DeleteExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar NoExceptExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Initializer.qll/type.Initializer\protect \T1\textdollar Initializer.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignAddExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignPointerAddExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignDivExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignMulExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignRemExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignSubExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignPointerSubExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignAndExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignLShiftExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignOrExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignRShiftExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Assignment.qll/type.Assignment\protect \T1\textdollar AssignXorExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar AddExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar PointerAddExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar ImaginaryRealAddExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar RealImaginaryAddExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar DivExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar ImaginaryDivExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar MaxExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar MinExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar MulExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar ImaginaryMulExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar RemExpr.html

Learning CodeQL, Release 1.24

Table 2 — continued from previous page

Example syntax CodeQL class(es) Remarks
Expr - Expr
SubExpr
PointerDiffExpr
PointerSubExpr
ImaginaryRealSubExpr C99
ReallmaginarySubExpr C99
Expr & Expr BitwiseAndExpr
Expr | Expr BitwiseOrExpr
Expr = Expr BitwiseXorExpr
Expr << Expr LShiftExpr
Expr >> Expr RShiftExpr
Expr && Expr Logical AndExpr
Expr | | Expr LogicalOrExpr
Expr == Expr EQExpr
Expr != Expr NEExpr
Expr >= Expr GEExpr
Expr > Expr GTExpr
Expr <= Expr LEExpr
Expr < Expr LTExpr
Expr ? Expr : Expr Conditional Expr
& Expr AddressOfExpr
* Expr PointerDereferenceExpr
Expr -- PostfixDecrExpr
-- Expr PrefixDecrExpr
Expr ++ PostfixIncrExpr
++ Expr PrefixIncrExpr
__imag (Expr) ImaginaryPartExpr GNU extension
__real (Expr) RealPartExpr GNU extension
- Expr UnaryMinusExpr
+ Expr UnaryPlusExpr
~ Expr
ComplementExpr
ConjugationExpr GNU extension
! Expr NotExpr
VectorFillOperation GNU extension
int vect __attribute__
((vector_size (16)
))
={3,8,32,33};
sizeof (Expr) SizeofExprOperator

Continued on next page

3.2. CodeQL library for C and C++

61

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar SubExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar PointerDiffExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar PointerSubExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar ImaginaryRealSubExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar RealImaginarySubExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BitwiseOperation.qll/type.BitwiseOperation\protect \T1\textdollar BitwiseAndExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BitwiseOperation.qll/type.BitwiseOperation\protect \T1\textdollar BitwiseOrExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BitwiseOperation.qll/type.BitwiseOperation\protect \T1\textdollar BitwiseXorExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BitwiseOperation.qll/type.BitwiseOperation\protect \T1\textdollar LShiftExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BitwiseOperation.qll/type.BitwiseOperation\protect \T1\textdollar RShiftExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/LogicalOperation.qll/type.LogicalOperation\protect \T1\textdollar LogicalAndExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/LogicalOperation.qll/type.LogicalOperation\protect \T1\textdollar LogicalOrExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ComparisonOperation.qll/type.ComparisonOperation\protect \T1\textdollar EQExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ComparisonOperation.qll/type.ComparisonOperation\protect \T1\textdollar NEExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ComparisonOperation.qll/type.ComparisonOperation\protect \T1\textdollar GEExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ComparisonOperation.qll/type.ComparisonOperation\protect \T1\textdollar GTExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ComparisonOperation.qll/type.ComparisonOperation\protect \T1\textdollar LEExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ComparisonOperation.qll/type.ComparisonOperation\protect \T1\textdollar LTExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/LogicalOperation.qll/type.LogicalOperation\protect \T1\textdollar ConditionalExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar AddressOfExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar PointerDereferenceExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar PostfixDecrExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar PrefixDecrExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar PostfixIncrExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar PrefixIncrExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar ImaginaryPartExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar RealPartExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar UnaryMinusExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar UnaryPlusExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BitwiseOperation.qll/type.BitwiseOperation\protect \T1\textdollar ComplementExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/ArithmeticOperation.qll/type.ArithmeticOperation\protect \T1\textdollar ConjugationExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/LogicalOperation.qll/type.LogicalOperation\protect \T1\textdollar NotExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/BuiltInOperations.qll/type.BuiltInOperations\protect \T1\textdollar VectorFillOperation.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar SizeofExprOperator.html

Learning CodeQL, Release 1.24

Table 2 — continued from previous page

Example syntax CodeQL class(es) Remarks
sizeof (Type) SizeofTypeOperator
SizeofPackOperator

template < typename... T >
int count (T &&...t)

{ return sizeof... (t

); }
({Stmt ; Expr}) StmtExpr GNU/Clang extension
this ThisExpr
throw (Expr); ThrowExpr
throw; ReThrowExpr

TypeidOperator

typeid (Expr)
typeid (Type)
__uuidof (Expr) UuidofOperator Microsoft extension

Type classes

This table lists subclasses of Type representing C/C++ types.

62 Chapter 3. CodeQL for C and C++

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar SizeofTypeOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar SizeofPackOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/stmts/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar StmtExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar ThisExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Call.qll/type.Call\protect \T1\textdollar ThrowExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Call.qll/type.Call\protect \T1\textdollar ReThrowExpr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar TypeidOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar UuidofOperator.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html

Learning CodeQL, Release 1.24

Example syntax CodeQL class Remarks
void VoidType

_Bool or bool BoolType

chari16_t Charl6Type Cl1, C++11
char32_t Char32Type Cl1, C++11
char PlainCharType

signed char SignedCharType

unsigned char UnsignedCharType

int IntType

long long LongLongType

long LongType

short ShortType

wchar_t WideCharType

nullptr_t NullPointerType

double DoubleType

long double LongDoubleType

float FloatType

auto AutoType

decltype (Expr) Decltype

Type [n] ArrayType

Type (~ blockptr) (Parameter) BlockType Apple extension
Type (* funcptr) (Parameter) FunctionPointerType

Type (& funcref) (Parameter) FunctionReferenceType

Type __attribute__ ((vector_size (n))) | GNUVectorType

Type * PointerType

Type & LValueReferenceType

Type && RValueReferenceType

Type (Class *:: membptr) (Parameter) PointerToMemberType

template < template < typename > class C> TemplateTemplateParameter

template < typename T > TemplateParameter

Preprocessor classes

This table lists Preprocessor classes representing C/C++ preprocessing directives.

3.2. CodeQL library for C and C++ 63

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar VoidType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar BoolType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Char16Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Char32Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar PlainCharType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar SignedCharType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar UnsignedCharType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar IntType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar LongLongType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar LongType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar ShortType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar WideCharType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar NullPointerType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar DoubleType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar LongDoubleType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar FloatType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar AutoType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Decltype.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar ArrayType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar BlockType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar FunctionPointerType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar FunctionReferenceType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar GNUVectorType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar PointerType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar LValueReferenceType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar RValueReferenceType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar Type.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Class.qll/type.Class\protect \T1\textdollar Class.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Parameter.qll/type.Parameter\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar PointerToMemberType.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar TemplateTemplateParameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Type.qll/type.Type\protect \T1\textdollar TemplateParameter.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/module.Preprocessor.html

Learning CodeQL, Release 1.24

Example syntax CodeQL class Remarks

#elif condition PreprocessorElif

#if condition PreprocessorlIf

#ifdef macro Preprocessorlfdef

#ifndef macro Preprocessorlfndef

#else PreprocessorElse

#endif PreprocessorEndif

#line line_number file_name | PreprocessorLine

#pragma pragma_property PreprocessorPragma

#undef macro PreprocessorUndef

#warning message PreprocessorWarning

#error message PreprocessorError

#include file_name Include

#import file_name Import Apple/NeXT extension
#include_next file_name IncludeNext Apple/NeXT extension
#define macro Macro

3.2.3 Further reading
* CodeQL queries for C and C++

* Example queries for C and C++

CodeQL library reference for C and C++
* QL language reference

* CodeQL tools

3.3 Functions in C and C++

You can use CodeQL to explore functions in C and C++ code.

3.3.1 Overview

The standard CodeQL library for C and C++ represents functions using the Function class (see CodeQL libraries
for C and C++).

The example queries in this topic explore some of the most useful library predicates for querying functions.

3.3.2 Finding all static functions

Using the member predicate Function.isStatic () we can list all the static functions in a database:

import cpp

from Function f
where f.isStatic()
select f, "This is a static function."

This query is very general, so there are probably too many results to be interesting for most nontrivial projects.

64 Chapter 3. CodeQL for C and C++

https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorElif.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorIf.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorIfdef.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorIfndef.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorElse.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorEndif.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorLine.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorPragma.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorUndef.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorWarning.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Preprocessor.qll/type.Preprocessor\protect \T1\textdollar PreprocessorError.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Include.qll/type.Include\protect \T1\textdollar Include.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Include.qll/type.Include\protect \T1\textdollar Import.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Include.qll/type.Include\protect \T1\textdollar IncludeNext.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/Macro.qll/type.Macro\protect \T1\textdollar Macro.html
https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

3.3.3 Finding functions that are not called

It might be more interesting to find functions that are not called, using the standard CodeQL FunctionCall class
from the abstract syntax tree category (see CodeQL libraries for C and C++). The FunctionCall class can be
used to identify places where a function is actually used, and it is related to Function through the FunctionCall.
getTarget () predicate.

import cpp

from Function f
where not exists(FunctionCall fc | fc.getTarget() = f)
select f, "This function is never called."

See this in the query console on LGTM.com

The new query finds functions that are not the target of any FunctionCallin other words, functions that are
never called. You may be surprised by how many results the query finds. However, if you examine the results,
you can see that many of the functions it finds are used indirectly. To create a query that finds only unused
functions, we need to refine the query and exclude other ways of using a function.

3.3.4 Excluding functions that are referenced with a function pointer

You can modify the query to remove functions where a function pointer is used to reference the function:

import cpp

from Function £
where not exists(FunctionCall fc | fc.getTarget() = f)
and not exists(FunctionAccess fa | fa.getTarget() = f)
select f, "This function is never called, or referenced with a function pointer."

See this in the query console on LGTM.com

This query returns fewer results. However, if you examine the results then you can probably still find potential
refinements.

For example, there is a more complicated LGTM query that finds unused static functions. To see the code for this
query, click Open in query console at the top of the page.

You can explore the definition of an element in the standard libraries and see what predicates are
available. Use the keyboard F3 button to open the definition of any element. Alternatively, hover
over the element and click Jump to definition in the tooltip displayed. The library file is opened in
a new tab with the definition highlighted.

3.3.5 Finding a specific function

This query uses Function and FunctionCall to find calls to the function sprintf that have a variable format
stringwhich is potentially a security hazard.

import cpp

from FunctionCall fc
where fc.getTarget().getQualifiedName() = "sprintf"

(continues on next page)

3.3. Functions in C and C++ 65

https://lgtm.com/query/1505891246456/
https://lgtm.com/query/1505890446605/
https://lgtm.com/rules/2152580467/

Learning CodeQL, Release 1.24

(continued from previous page)

and not fc.getArgument(1l) instanceof StringlLiteral
select fc, "sprintf called with variable format string."

See this in the query console on LGTM.com

This uses:
* Declaration.getQualifiedName () to identify calls to the specific function sprintf.
* FunctionCall.getArgument (1) to fetch the format string argument.

Note that we could have used Declaration.getName(), but Declaration.getQualifiedName() is a bet-
ter choice because it includes the namespace. For example: getName() would return vector where
getQualifiedName would return std: :vector.

The LGTM version of this query is considerably more complicated, but if you look carefully you will find that its
structure is the same. See Non-constant format string and click Open in query console at the top of the page.

3.3.6 Further reading
* CodeQL queries for C and C++
* Example queries for C and C++
* CodeQL library reference for C and C++
* QL language reference

¢ CodeQL tools

3.4 Expressions, types, and statements in C and C++

You can use CodeQL to explore expressions, types, and statements in C and C++ code to find, for example,
incorrect assignments.

3.4.1 Expressions and types in CodeQL

Each part of an expression in C becomes an instance of the Expr class. For example, the C code x = x + 1
becomes an AssignExpr, an AddExpr, two instances of VariableAccess and a Literal. All of these CodeQL
classes extend Expr.

Finding assignments to zero

In the following example we find instances of AssignExpr which assign the constant value zero:

import cpp

from AssignExpr e
where e.getRValue().getValue().toInt() = 0O
select e, "Assigning the value O to something."

See this in the query console on LGTM.com

66 Chapter 3. CodeQL for C and C++

https://lgtm.com/query/1505889506751/
https://lgtm.com/rules/2152810612/
https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://lgtm.com/query/1505908086530/

Learning CodeQL, Release 1.24

The where clause in this example gets the expression on the right side of the assignment, getRValue(), and
compares it with zero. Notice that there are no checks to make sure that the right side of the assignment is
an integer or that it has a value (that is, it is compile-time constant, rather than a variable). For expressions
where either of these assumptions is wrong, the associated predicate simply does not return anything and the
where clause will not produce a result. You could think of it as if there is an implicit exists(e.getRValue() .
getValue() .toInt()) at the beginning of this line.

It is also worth noting that the query above would find this C code:

yPtr = NULL;

This is because the database contains a representation of the code base after the preprocessor transforms have
run. This means that any macro invocations, such as the NULL define used here, are expanded during the creation
of the database. If you want to write queries about macros then there are some special library classes that have
been designed specifically for this purpose (for example, the Macro, MacroInvocation classes and predicates
like Element . isInMacroExpansion()). In this case, it is good that macros are expanded, but we do not want
to find assignments to pointers. For more information, see Database generation on LGTM.com.

Finding assignments of 0 to an integer

We can make the query more specific by defining a condition for the left side of the expression. For example:

import cpp

from AssignExpr e
where e.getRValue().getValue().toInt() = 0

and e.getLValue().getType() .getUnspecifiedType() instanceof IntegralType
select e, "Assigning the value O to an integer."

See this in the query console on LGTM.com

This checks that the left side of the assignment has a type that is some kind of integer. Note the call to Type.
getUnspecifiedType (). This resolves typedef types to their underlying types so that the query finds assign-
ments like this one:

typedef int mylInt;
myInt i;

i = 0;

3.4.2 Statements in CodeQL
We can refine the query further using statements. In this case we use the class ForStmt:
¢ Stmt - C/C++ statements
— Loop
WhileStmt
ForStmt
DoStmt

— ConditionalStmt

3.4. Expressions, types, and statements in C and C++ 67

https://lgtm.com/help/lgtm/generate-database
https://lgtm.com/query/1505906986578/

Learning CodeQL, Release 1.24

IfStmt
SwitchStmt
— TryStmt
- ExprStmt - expressions used as a statement; for example, an assignment

— Block - { } blocks containing more statements

Finding assignments of 0 in for loop initialization

We can restrict the previous query so that it only considers assignments inside for statements by adding the
ForStmt class to the query. Then we want to compare the expression to ForStmt.getInitialization():

import cpp

from AssignExpr e, ForStmt f
// the assignment is the for loop initialization
where e = f.getInitialization()

Unfortunately this would not quite work, because the loop initialization is actually a Stmt not an Exprthe
AssignExpr class is wrapped in an ExprStmt class. Instead, we need to find the closest enclosing Stmt around
the expression using Expr.getEnclosingStmt ():

import cpp

from AssignExpr e, ForStmt f
// the assignment is in the 'for' loop initialization statement
where e.getEnclosingStmt() = f.getInitialization()
and e.getRValue().getValue().toInt() = O
and e.getLValue() .getType() .getUnspecifiedType() instanceof IntegralType
select e, "Assigning the value O to an integer, inside a for loop initialization."

See this in the query console on LGTM.com

Finding assignments of 0 within the loop body

We can find assignments inside the loop body using similar code with the predicate Loop.getStmt () :

import cpp

from AssignExpr e, ForStmt f
// the assignment is in the for loop body
where e.getEnclosingStmt().getParentStmt*() = f.getStmt()
and e.getRValue().getValue().toInt() = O
and e.getLValue().getType() .getUnderlyingType() instanceof IntegralType
select e, "Assigning the value O to an integer, inside a for loop body."

See this in the query console on LGTM.com

Note that we replaced e.getEnclosingStmt () with e.getEnclosingStmt () .getParentStmt*(), to find an
assignment expression that is deeply nested inside the loop body. The transitive closure modifier * here indicates

68 Chapter 3. CodeQL for C and C++

https://lgtm.com/query/1505909016965/
https://lgtm.com/query/1505901437190/

Learning CodeQL, Release 1.24

that Stmt . getParentStmt () may be followed zero or more times, rather than just once, giving us the statement,

its parent statement, its parents parent statement etc.

3.4.3 Further reading
* CodeQL queries for C and C++

* Example queries for C and C++

CodeQL library reference for C and C++
* QL language reference

* CodeQL tools

3.5 Conversions and classes in C and C++

You can use the standard CodeQL libraries for C and C++ to detect when the type of an expression is changed.

3.5.1 Conversions

In C and C++, conversions change the type of an expression. They may be implicit conversions generated by the

compiler, or explicit conversions requested by the user.
Lets take a look at the Conversion class in the standard library:
¢ Expr
— Conversion
Cast
- CStyleCast
- StaticCast
- ConstCastReinterpretCast
- DynamicCast
ArrayToPointerConversion

VirtualMemberToFunctionPointerConversion

Exploring the subexpressions of an assignment

Let us consider the following C code:

typedef signed int mylInt;
int main(int argc, char *argv[])

{
unsigned int i;
i = (myInt)1;
return O;

}

And this simple query:

3.5. Conversions and classes in C and C++

69

https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/exprs/Cast.qll/type.Cast\protect \T1\textdollar Conversion.html

Learning CodeQL, Release 1.24

import cpp

from AssignExpr a
select a, a.getLValue().getType(), a.getRValue().getType()

The query examines the code for assignments, and tells us the type of their left and right subexpressions. In
the example C code above, there is just one assignment. Notably, this assignment has two conversions (of type
CStyleCast) on the right side:

1. Explicit cast of the integer 1 to a myInt.

2. Implicit conversion generated by the compiler, in preparation for the assignment, converting that expression
into an unsigned int.

The query actually reports the result:

. = ... | unsigned int | int

It is as though the conversions are not there! The reason for this is that Conversion expressions do not wrap
the objects they convert; instead conversions are attached to expressions and can be accessed using Expr.
getConversion(). The whole assignment in our example is seen by the standard library classes like this:

AssignExpr, i = (myInt)1
VariableAccess, i
Literal, 1
CStyleCast, myInt (explicit)
CStyleCast, unsigned int (implicit)

Accessing parts of the assignment:
* Left sideaccess value using Assignment.getLValue().
* Right sideaccess value using Assignment.getRValue().

* Conversions of the Literal on the right sideaccess both using calls to Expr.getConversion(). As a
shortcut, you can use Expr.GetFullyConverted() to follow all the way to the resulting type, or Expr.
GetExplicitlyConverted() to find the last explicit conversion from an expression.

Using these predicates we can refine our query so that it reports the results that we expected:

import cpp

from AssignExpr a
select a, a.getLValue().getExplicitlyConverted().getType(), a.getRValue().getExplicitlyConverted().
~getType ()

The result is now:

. = ... | unsigned int | myInt

We can refine the query further by adding Type . getUnderlyingType () to resolve the typedef:

70 Chapter 3. CodeQL for C and C++

Learning CodeQL, Release 1.24

import cpp

from AssignExpr a
select a, a.getLValue().getExplicitlyConverted().getType().getUnderlyingType(), a.getRValue().
—getExplicitlyConverted() .getType () .getUnderlyingType ()

The result is now:

. = ... | unsigned int | signed int

If you simply wanted to get the values of all assignments in expressions, regardless of position, you could replace
Assignment.getLValue() and Assignment.getRValue () with Operation.getAnOperand():

import cpp

from AssignExpr a
select a, a.getAnOperand().getExplicitlyConverted().getType()

Unlike the earlier versions of the query, this query would return each side of the expression as a separate result:

| unsigned int
.= ... | myInt

Note

In general, predicates named getAXxx exploit the ability to return multiple results (multi-
ple instances of Xxx) whereas plain getXxx predicates usually return at most one specific
instance of Xxx.

3.5.2 Classes

Next were going to look at C++ classes, using the following CodeQL classes:
* Type
- UserTypeincludes classes, typedefs, and enums
Classa class or struct
- Structa struct, which is treated as a subtype of Class

- TemplateClassa C++ class template

Finding derived classes

We want to create a query that checks for destructors that should be virtual. Specifically, when a class and a class
derived from it both have destructors, the base class destructor should generally be virtual. This ensures that the
derived class destructor is always invoked. In the CodeQL library, Destructor is a subtype of MemberFunction:

* Function
— MemberFunction

Constructor

3.5. Conversions and classes in C and C++ 71

Learning CodeQL, Release 1.24

Destructor

Our starting point for the query is pairs of a base class and a derived class, connected using Class.
getABaseClass():

import cpp

from Class base, Class derived
where derived.getABaseClass+() = base
select base, derived, "The second class is derived from the first."

See this in the query console on LGTM.com

Note that the transitive closure symbol + indicates that Class.getABaseClass () may be followed one or more
times, rather than only accepting a direct base class.

A lot of the results are uninteresting template parameters. You can remove those results by updating the where
clause as follows:

where derived.getABaseClass+() = base
and not exists(base.getATemplateArgument())
and not exists(derived.getATemplateArgument())

See this in the query console on LGTM.com

Finding derived classes with destructors

Now we can extend the query to find derived classes with destructors, using the Class.getDestructor () pred-
icate:

import cpp

from Class base, Class derived, Destructor dl, Destructor d2
where derived.getABaseClass+() = base
and not exists(base.getATemplateArgument())
and not exists(derived.getATemplateArgument())
and d1 = base.getDestructor()
and d2 = derived.getDestructor()
select base, derived, "The second class is derived from the first, and both have a destructor."

See this in the query console on LGTM.com

Notice that getting the destructor implicitly asserts that one exists. As a result, this version of the query returns
fewer results than before.

Finding base classes where the destructor is not virtual

Our last change is to use Function.isVirtual() to find cases where the base destructor is not virtual:

import cpp

from Class base, Destructor dl, Class derived, Destructor d2
where derived.getABaseClass+() = base

(continues on next page)

72 Chapter 3. CodeQL for C and C++

https://lgtm.com/query/1505902347211/
https://lgtm.com/query/1505907047251/
https://lgtm.com/query/1505901767389/

Learning CodeQL, Release 1.24

(continued from previous page)

and dl.getDeclaringType() = base
and d2.getDeclaringType() = derived
and not di.isVirtual()
select dl1, "This destructor should probably be virtual."

See this in the query console on LGTM.com
That completes the query.

There is a similar built-in query on LGTM.com that finds classes in a C/C++ project with virtual functions but no
virtual destructor. You can take a look at the code for this query by clicking Open in query console at the top of
that page.

3.5.3 Further reading
* CodeQL queries for C and C++
* Example queries for C and C++
* CodeQL library reference for C and C++
* QL language reference

* CodeQL tools

3.6 Analyzing data flow in C and C++

You can use data flow analysis to track the flow of potentially malicious or insecure data that can cause vulnera-
bilities in your codebase.

3.6.1 About data flow

Data flow analysis computes the possible values that a variable can hold at various points in a program, deter-
mining how those values propagate through the program, and where they are used. In CodeQL, you can model
both local data flow and global data flow. For a more general introduction to modeling data flow, see About data
flow analysis.

3.6.2 Local data flow

Local data flow is data flow within a single function. Local data flow is usually easier, faster, and more precise
than global data flow, and is sufficient for many queries.

Using local data flow

The local data flow library is in the module DataFlow, which defines the class Node denoting any element that data
can flow through. Nodes are divided into expression nodes (ExprNode) and parameter nodes (ParameterNode).
It is possible to map between data flow nodes and expressions/parameters using the member predicates asExpr
and asParameter:

3.6. Analyzing data flow in C and C++ 73

https://lgtm.com/query/1505908156827/
https://lgtm.com/rules/2158670642/
https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

class Node {
/** Gets the expression corresponding to this mode, if any. */
Expr asExpr() { ... }

/*% Gets the parameter corresponding to this node, if any. */
Parameter asParameter() { ... }

or using the predicates exprNode and parameterNode:

J**
* Gets the nmode corresponding to expression ‘e .
*/

ExprNode exprNode(Expr e) { ... }

J**

* Gets the node corresponding to the value of parameter “p° at function entry.
*/

ParameterNode parameterNode(Parameter p) { ... }

The predicate localFlowStep(Node nodeFrom, Node nodeTo) holds if there is an immediate data flow edge
from the node nodeFrom to the node nodeTo. The predicate can be applied recursively (using the + and *
operators), or through the predefined recursive predicate 1ocalFlow, which is equivalent to localFlowStepx*.

For example, finding flow from a parameter source to an expression sink in zero or more local steps can be
achieved as follows:

DataFlow: :localFlow(DataFlow: : parameterNode (source), DataFlow: :exprNode (sink))

Using local taint tracking

Local taint tracking extends local data flow by including non-value-preserving flow steps. For example:

int i = tainted_user_input();
some_big_struct *array = malloc(i * sizeof (some_big_struct));

In this case, the argument to malloc is tainted.

The local taint tracking library is in the module TaintTracking. Like local data flow, a predicate
localTaintStep(DataFlow: :Node nodeFrom, DataFlow::Node nodeTo) holds if there is an immediate taint
propagation edge from the node nodeFrom to the node nodeTo. The predicate can be applied recursively (us-
ing the + and * operators), or through the predefined recursive predicate localTaint, which is equivalent to
localTaintStep*.

For example, finding taint propagation from a parameter source to an expression sink in zero or more local
steps can be achieved as follows:

TaintTracking: :localTaint (DataFlow: : parameterNode (source), DataFlow: :exprNode (sink))

74 Chapter 3. CodeQL for C and C++

Learning CodeQL, Release 1.24

Examples

The following query finds the filename passed to fopen.

import cpp

from Function fopen, FunctionCall fc

where fopen.hasQualifiedName("fopen")
and fc.getTarget() = fopen

select fc.getArgument (0)

Unfortunately, this will only give the expression in the argument, not the values which could be passed to it. So
we use local data flow to find all expressions that flow into the argument:

import cpp
import semmle.code.cpp.dataflow.DataFlow

from Function fopen, FunctionCall fc, Expr src
where fopen.hasQualifiedName("fopen")

and fc.getTarget() = fopen

and DataFlow::localFlow(DataFlow: :exprNode(src), DataFlow: :exprNode(fc.getArgument(0)))
select src

Then we can vary the source, for example an access to a public parameter. The following query finds where a
public parameter is used to open a file:

import cpp
import semmle.code.cpp.dataflow.DataFlow

from Function fopen, FunctionCall fc, Parameter p
where fopen.hasQualifiedName("fopen")

and fc.getTarget() = fopen

and DataFlow::localFlow(DataFlow: :parameterNode(p), DataFlow::exprNode(fc.getArgument(0)))
select p

The following example finds calls to formatting functions where the format string is not hard-coded.

import semmle.code.cpp.dataflow.DataFlow
import semmle.code.cpp.commons.Printf

from FormattingFunction format, FunctionCall call, Expr formatString
where call.getTarget() = format
and call.getArgument (format.getFormatParameterIndex()) = formatString
and not exists(DataFlow::Node source, DataFlow::Node sink |
DataFlow: :localFlow(source, sink) and
source.asExpr() instanceof StringlLiteral and
sink.asExpr() = formatString
)

select call, "Argument to " + format.getQualifiedName() + " isn't hard-coded."

3.6. Analyzing data flow in C and C++ 75

Learning CodeQL, Release 1.24

Exercises

Exercise 1: Write a query that finds all hard-coded strings used to create a host_ent via gethostbyname, using
local data flow. (Answer)

3.6.3 Global data flow

Global data flow tracks data flow throughout the entire program, and is therefore more powerful than local data
flow. However, global data flow is less precise than local data flow, and the analysis typically requires significantly
more time and memory to perform.

Note

You can model data flow paths in CodeQL by creating path queries. To view data flow paths generated
by a path query in CodeQL for VS Code, you need to make sure that it has the correct metadata and
select clause. For more information, see Creating path queries.

Using global data flow

The global data flow library is used by extending the class DataFlow: : Configuration as follows:

import semmle.code.cpp.dataflow.DataFlow

class MyDataFlowConfiguration extends DataFlow::Configuration {
MyDataFlowConfiguration() { this = "MyDataFlowConfiguration" }

override predicate isSource(DataFlow::Node source) {

override predicate isSink(DataFlow::Node sink) {

The following predicates are defined in the configuration:
* isSourcedefines where data may flow from
* isSinkdefines where data may flow to
* isBarrieroptional, restricts the data flow
e isBarrierGuardoptional, restricts the data flow
* isAdditionalFlowStepoptional, adds additional flow steps

The characteristic predicate MyDataFlowConfiguration() defines the name of the configuration, so
"MyDataFlowConfiguration" should be replaced by the name of your class.

The data flow analysis is performed using the predicate hasFlow(DataFlow: :Node source, DataFlow: :Node
sink):

from MyDataFlowConfiguration dataflow, DataFlow::Node source, DataFlow::Node sink
where dataflow.hasFlow(source, sink)
select source, "Data flow to $@.", sink, sink.toString()

76 Chapter 3. CodeQL for C and C++

https://help.semmle.com/QL/learn-ql/writing-queries/path-queries.html

Learning CodeQL, Release 1.24

Using global taint tracking

Global taint tracking is to global data flow as local taint tracking is to local data flow. That is, global taint tracking
extends global data flow with additional non-value-preserving steps. The global taint tracking library is used by
extending the class TaintTracking: : Configuration as follows:

import semmle.code.cpp.dataflow.TaintTracking

class MyTaintTrackingConfiguration extends TaintTracking::Configuration {
MyTaintTrackingConfiguration() { this = "MyTaintTrackingConfiguration" }

override predicate isSource(DataFlow::Node source) {

override predicate isSink(DataFlow::Node sink) {

The following predicates are defined in the configuration:
* isSourcedefines where taint may flow from
* isSinkdefines where taint may flow to
* isSanitizeroptional, restricts the taint flow
* isSanitizerGuardoptional, restricts the taint flow
* isAdditionalTaintStepoptional, adds additional taint steps

Similar to global data flow, the characteristic predicate MyTaintTrackingConfiguration() defines the unique
name of the configuration, so "MyTaintTrackingConfiguration" should be replaced by the name of your class.

The taint tracking analysis is performed using the predicate hasFlow(DataFlow::Node source,
DataFlow: :Node sink).
Examples

The following data flow configuration tracks data flow from environment variables to opening files in a Unix-like
environment:

import semmle.code.cpp.dataflow.DataFlow

class EnvironmentToFileConfiguration extends DataFlow::Configuration {
EnvironmentToFileConfiguration() { this = "EnvironmentToFileConfiguration" }

override predicate isSource(DataFlow::Node source) {
exists (Function getenv |
source.asExpr() . (FunctionCall) .getTarget() = getenv and
getenv.hasQualifiedName("getenv")

(continues on next page)

3.6. Analyzing data flow in C and C++ 77

Learning CodeQL, Release 1.24

(continued from previous page)

override predicate isSink(DataFlow::Node sink) {
exists (FunctionCall fc |
sink.asExpr() = fc.getArgument(0) and
fc.getTarget () .hasQualifiedName ("fopen")
)

from Expr getenv, Expr fopen, EnvironmentToFileConfiguration config
where config.hasFlow(DataFlow: :exprNode(getenv), DataFlow: :exprNode(fopen))
select fopen, "This 'fopen' uses data from $@.",

getenv, '"call to 'getenv

The following taint-tracking configuration tracks data from a call to ntohl to an array index operation. It uses
the Guards library to recognize expressions that have been bounds-checked, and defines isSanitizer to prevent
taint from propagating through them. It also uses isAdditionalTaintStep to add flow from loop bounds to
loop indexes.

import cpp
import semmle.code.cpp.controlflow.Guards
import semmle.code.cpp.dataflow.TaintTracking

class NetworkToBufferSizeConfiguration extends TaintTracking::Configuration {
NetworkToBufferSizeConfiguration() { this = "NetworkToBufferSizeConfiguration" }

override predicate isSource(DataFlow::Node node) {
node.asExpr() . (FunctionCall) .getTarget () .hasGlobalName ("ntohl")
}

override predicate isSink(DataFlow::Node node) {
exists(ArrayExpr ae | node.asExpr() = ae.getArrayOffset())
}

override predicate isAdditionalTaintStep(DataFlow::Node pred, DataFlow::Node succ) {
exists(Loop loop, LoopCounter lc |
loop = lc.getALoop() and
loop.getControllingExpr (). (RelationalOperation) .getGreaterOperand() = pred.asExpr() |
succ.asExpr() = lc.getVariableAccessInLoop(loop)

override predicate isSanitizer(DataFlow::Node node) {
exists(GuardCondition gc, Variable v |
gc.getAChild*() = v.getAnAccess() and
node.asExpr() = v.getAnAccess() and
gc.controls(node.asExpr() .getBasicBlock(), _)
)

from DataFlow: :Node ntohl, DataFlow::Node offset, NetworkToBufferSizeConfiguration conf

(continues on next page)

78 Chapter 3. CodeQL for C and C++

Learning CodeQL, Release 1.24

(continued from previous page)

where conf.hasFlow(ntohl, offset)
select offset, "This array offset may be influenced by $0@.", ntohl,
"converted data from the network"

Exercises

Exercise 2: Write a query that finds all hard-coded strings used to create a host_ent via gethostbyname, using
global data flow. (Answer)

Exercise 3: Write a class that represents flow sources from getenv. (Answer)

Exercise 4: Using the answers from 2 and 3, write a query which finds all global data flows from getenv to
gethostbyname. (Answer)

3.6.4 Answers

Exercise 1

import semmle.code.cpp.dataflow.DataFlow

from StringLiteral sl, FunctionCall fc
where fc.getTarget() .hasName("gethostbyname")

and DataFlow::localFlow(DataFlow: :exprNode(sl), DataFlow::exprNode(fc.getArgument(0)))
select sl, fc

Exercise 2

import semmle.code.cpp.dataflow.DataFlow

class LiteralToGethostbynameConfiguration extends DataFlow::Configuration {
LiteralToGethostbynameConfiguration() {
this = "LiteralToGethostbynameConfiguration"

}

override predicate isSource(DataFlow::Node source) {
source.asExpr() instanceof StringLiteral

override predicate isSink(DataFlow::Node sink) {
exists (FunctionCall fc |
sink.asExpr() = fc.getArgument(0) and
fc.getTarget () .hasName("gethostbyname"))

from StringLiteral sl, FunctionCall fc, LiteralToGethostbynameConfiguration cfg
where cfg.hasFlow(DataFlow: :exprNode(sl), DataFlow: :exprNode(fc.getArgument (0)))
select sl, fc

3.6. Analyzing data flow in C and C++ 79

Learning CodeQL, Release 1.24

Exercise 3

import cpp

class GetenvSource extends FunctionCall {
GetenvSource() {
this.getTarget () .hasQualifiedName ("getenv")
}

Exercise 4

import semmle.code.cpp.dataflow.DataFlow

class GetenvSource extends DataFlow: :Node {
GetenvSource() {
this.asExpr() . (FunctionCall).getTarget () .hasQualifiedName("getenv")
¥

class GetenvToGethostbynameConfiguration extends DataFlow::Configuration {
GetenvToGethostbynameConfiguration() {
this = "GetenvToGethostbynameConfiguration"

override predicate isSource(DataFlow::Node source) {
source instanceof GetenvSource

override predicate isSink(DataFlow::Node sink) {
exists (FunctionCall fc |
sink.asExpr() = fc.getArgument(0) and
fc.getTarget () .hasName ("gethostbyname"))

from DataFlow: :Node getenv, FunctionCall fc, GetenvToGethostbynameConfiguration cfg
where cfg.hasFlow(getenv, DataFlow::exprNode(fc.getArgument (0)))
select getenv.asExpr(), fc

3.6.5 Further reading
* Exploring data flow with path queries
* CodeQL queries for C and C++
* Example queries for C and C++
* CodeQL library reference for C and C++
* QL language reference

¢ CodeQL tools

80 Chapter 3. CodeQL for C and C++

https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

3.7 Refining a query to account for edge cases

You can improve the results generated by a CodeQL query by adding conditions to remove false positive results
caused by common edge cases.

3.7.1 Overview

This topic describes how a C++ query was developed. The example introduces recursive predicates and demon-
strates the typical workflow used to refine a query. For a full overview of the topics available for learning to write
queries for C/C++ code, see CodeQL for C and C++.

3.7.2 Finding every private field and checking for initialization
Writing a query to check if a constructor initializes all private fields seems like a simple problem, but there are
several edge cases to account for.

3.7.3 Basic query

We can start by looking at every private field in a class and checking that every constructor in that class initializes
them. Once you are familiar with the library for C++ this is not too hard to do.

import cpp

from Constructor c, Field f
where f.getDeclaringType() = c.getDeclaringType() and f.isPrivate()

and not exists(Assignment a | a = f.getAnAssignment() and a.getEnclosingFunction() = c)
select c, "Constructor does not initialize fields $0@.", f, f.getName()

1. f.getDeclaringType() = c.getDeclaringType() asserts that the field and constructor are both part
of the same class.

2. f.isPrivate() checks if the field is private.

3. not exists(Assignment a | a = f.getAnAssignment() and a.getEnclosingFunction() = c)
checks that there is no assignment to the field in the constructor.

This code looks fairly complete, but when you test it on a project, there are several results that contain examples
that we have overlooked.

3.7.4 Refinement lexcluding fields initialized by lists

You may see that the results contain fields that are initialized by constructor initialization lists, instead of by
assignment statements. For example, the following class:

class BoxedInt {
public:
BoxedInt (int value) : m_value(value) {}

private:
int m_value;

};

These can be excluded by adding an extra condition to check for this special constructor-only form of assignment.

3.7. Refining a query to account for edge cases 81

Learning CodeQL, Release 1.24

import cpp

from Constructor c, Field £
where f.getDeclaringType() = c.getDeclaringType() and f.isPrivate()

and not exists(Assignment a | a = f.getAnAssignment() and a.getEnclosingFunction() = c)

// check for constructor initialization lists as well

and not exists(ConstructorFieldInit i | i.getTarget() = f and i.getEnclosingFunction() = c)
select c, "Constructor does not initialize fields $@.", f, f.getName()

3.7.5 Refinement 2excluding fields initialized by external libraries

When you test the revised query, you may discover that fields from classes in external libraries are over-reported.
This is often because a header file declares a constructor that is defined in a source file that is not analyzed
(external libraries are often excluded from analysis). When the source code is analyzed, the CodeQL database is
populated with a Constructor entry with no body. This constructor therefore contains no assignments and
consequently the query reports that any fields initialized by the constructor are uninitialized. There is no particular
reason to be suspicious of these cases, and we can exclude them from the results by defining a condition to exclude
constructors that have no body:

import cpp

from Constructor c, Field f
where f.getDeclaringType() = c.getDeclaringType() and f.isPrivate()
and not exists(Assignment a | a = f.getAnAssignment() and a.getEnclosingFunction() = c)
// check for constructor initialization lists as well
and not exists(ConstructorFieldInit i | i.getTarget() = f and i.getEnclosingFunction() = c)
// ignore cases where the constructor source code is not available
and exists(c.getBlock())
select c, "Constructor does not initialize fields $0@.", f, f.getName()

This is a reasonably precise querymost of the results that it reports are interesting. However, you could make
further refinements.

3.7.6 Refinement 3excluding fields initialized indirectly

You may also wish to consider methods called by constructors that assign to the fields, or even to the methods
called by those methods. As a concrete example of this, consider the following class.

class BoxedInt {
public:
BoxedInt (int value) {
setValue(value);

}
void setValue(int value) {
m_value = value;

}

private:

(continues on next page)

82 Chapter 3. CodeQL for C and C++

Learning CodeQL, Release 1.24

(continued from previous page)

int m_value;

};

This case can be excluded by creating a recursive predicate. The recursive predicate is given a function and a
field, then checks whether the function assigns to the field. The predicate runs itself on all the functions called by
the function that it has been given. By passing the constructor to this predicate, we can check for assignments of
a field in all functions called by the constructor, and then do the same for all functions called by those functions
all the way down the tree of function calls. For more information, see Recursion in the QL language reference.

import cpp

predicate getSubAssignment(Function c, Field f){
exists(Assignment a | a = f.getAnAssignment() and a.getEnclosingFunction() = c)
or exists(Function fun | c.calls(fun) and getSubAssignment(fun, f))
}
from Constructor c, Field f
where f.getDeclaringType() = c.getDeclaringType() and f.isPrivate()
// check for constructor initialization lists as well
and not exists(ConstructorFieldInit i | i.getTarget() = f and i.getEnclosingFunction() = c)
// check for initializations performed indirectly by methods called
// as a result of the constructor being called
and not getSubAssignment(c, f)
// ignore cases where the constructor source code is not avatilable
and exists(c.getBlock())
select c, "Constructor does not initialize fields $@.", f, f.getName()

3.7.7 Refinement 4simplifying the query

Finally we can simplify the query by using the transitive closure operator. In this final version of the query, c.
calls*(fun) resolves to the set of all functions that are c itself, are called by c, are called by a function that is
called by c, and so on. This eliminates the need to make a new predicate all together. For more information, see
Transitive closures in the QL language reference.

import cpp

from Constructor c, Field f
where f.getDeclaringType() = c.getDeclaringType() and f.isPrivate()
// check for constructor initialization lists as well
and not exists(ConstructorFieldInit i | i.getTarget() = f and i.getEnclosingFunction() = c)
// check for initializations performed indirectly by methods called
// as a result of the constructor being called
and not exists(Function fun, Assignment a |
c.calls*(fun) and a = f.getAnAssignment() and a.getEnclosingFunction() = fun)
// ignore cases where the constructor source code ts nmot avatlable
and exists(c.getBlock())
select c, "Constructor does not initialize fields $@.", f, f.getName()

See this in the query console on LGTM.com

3.7. Refining a query to account for edge cases 83

https://help.semmle.com/QL/ql-handbook/recursion.html
https://help.semmle.com/QL/ql-handbook/recursion.html#transitive-closures
https://lgtm.com/query/1505896968215/

Learning CodeQL, Release 1.24

3.7.8 Further reading
* CodeQL queries for C and C++
¢ Example queries for C and C++
* CodeQL library reference for C and C++
* QL language reference

¢ CodeQL tools

3.8 Detecting a potential buffer overflow

You can use CodeQL to detect potential buffer overflows by checking for allocations equal to strlen in C and
C++. This topic describes how a C/C++ query for detecting a potential buffer overflow was developed.

3.8.1 Problemdetecting memory allocation that omits space for a null termination
character
The objective of this query is to detect C/C++ code which allocates an amount of memory equal to the length

of a null terminated string, without adding +1 to make room for a null termination character. For example the
following code demonstrates this mistake, and results in a buffer overflow:

void processString(const char *input)

{

char *buffer = malloc(strlen(input));

strcpy(buffer, input);

3.8.2 Basic query

Before you can write a query you need to decide what entities to search for and then define how to identify them.

Defining the entities of interest

You could approach this problem either by searching for code similar to the call to malloc in line 3 or the call to
strcpy in line 5 (see example above). For our basic query, we start with a simple assumption: any call tomalloc
with only a strlen to define the memory size is likely to cause an error when the memory is populated.

Calls to strlen can be identified using the library StrlenCall class, but we need to define a new class to identify
calls to malloc. Both the library class and the new class need to extend the standard class FunctionCall, with
the added restriction of the function name that they apply to:

import cpp

class MallocCall extends FunctionCall
{
MallocCall() { this.getTarget().hasGlobalName("malloc") }

84 Chapter 3. CodeQL for C and C++

https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/commons/StringAnalysis.qll/type.StringAnalysis\protect \T1\textdollar StrlenCall.html

Learning CodeQL, Release 1.24

Note

You could easily extend this class to include similar functions such as realloc, or your own custom
allocator. With a little effort they could even include C++ new expressions (to do this, MallocCall
would need to extend a common superclass of both FunctionCall and NewExpr, such as Expr).

Finding the strlen(string) pattern

Before we start to write our query, theres one remaining task. We need to modify our new MallocCall class,
so it returns an expression for the size of the allocation. Currently this will be the first argument to the malloc
call, FunctionCall.getArgument (0), but converting this into a predicate makes it more flexible for future
refinements.

class MallocCall extends FunctionCall

{
MallocCall() { this.getTarget().hasGlobalName("malloc") }
Expr getAllocatedSize() {
result = this.getArgument(0)
}
}

Defining the basic query

Now we can write a query using these classes:

import cpp

class MallocCall extends FunctionCall

{
MallocCall() { this.getTarget() .hasGlobalName("malloc") }
Expr getAllocatedSize() {
result = this.getArgument (0)
}
}

from MallocCall malloc
where malloc.getAllocatedSize() instanceof StrlenCall
select malloc, "This allocation does not include space to null-terminate the string."

Note that there is no need to check whether anything is added to the strlen expression, as it would be in
the corrected C code malloc(strlen(string) + 1). This is because the corrected code would in fact be an
AddExpr containing a StrlenCall, not an instance of StrlenCall itself. A side-effect of this approach is that
we omit certain unlikely patterns such as malloc(strlen(string) + 0). In practice we can always come back
and extend our query to cover this pattern if it is a concern.

Tip

For some projects, this query may not return any results. Possibly the project you are querying does
not have any problems of this kind, but it is also important to make sure the query itself is working
properly. One solution is to set up a test project with examples of correct and incorrect code to run the

query against (the C code at the very top of this page makes a good starting point). Another approach
is to test each part of the query individually to make sure everything is working.

3.8. Detecting a potential buffer overflow 85

Learning CodeQL, Release 1.24

When you have defined the basic query then you can refine the query to include further coding patterns or to
exclude false positives:

3.8.3 Improving the query using the SSA library

The SSA library represents variables in static single assignment (SSA) form. In this form, each variable is assigned
exactly once and every variable is defined before it is used. The use of SSA variables simplifies queries considerably
as much of the local data flow analysis has been done for us. For more information, see Static single assignment
on Wikipedia.

Including examples where the string size is stored before use

The query above works for simple cases, but does not identify a common coding pattern where strlen(string)
is stored in a variable before being passed to malloc, as in the following example:

int len = strlen(input);
buffer = malloc(len);

To identify this case we can use the standard library SSA.qll (imported as semmle.code.cpp.controlflow.
SSA).

This library helps us identify where values assigned to local variables may subsequently be used.

For example, consider the following code:

void myFunction(bool condition)

{
const char* x = "alpha"; // definition #1 of x
printf("x = Ys\n", x); // use #1 of =
if (condition)
{
x = "beta"; // definition #2 of z
} else {
x = "gamma"; // definition #3 of z
}
printf("x = Ys\n", x); // use #2 of =
}

If we run the following query on the code, we get three results:

import cpp
import semmle.code.cpp.controlflow.SSA

from Variable var, Expr defExpr, Expr use
where exists(SsaDefinition ssaDef |
defExpr = ssaDef.getAnUltimateDefiningValue(var)
and use = ssaDef.getAUse(var))
select var, defExpr.getLocation().getStartLine() as dline, use.getLocation().getStartLine() as
—uline

86 Chapter 3. CodeQL for C and C++

http://en.wikipedia.org/wiki/Static_single_assignment_form

Learning CodeQL, Release 1.24

Results:
var | dline | uline
3 5
9 14
11 14

It is often useful to also display the defining expression defExpr, if there is one. For example we might adjust
the query above as follows:

import cpp

import semmle.code.cpp.controlflow.SSA

from Variable var, Expr defExpr, Expr use
where exists(SsaDefinition ssaDef |
defExpr = ssaDef.getAnUltimateDefiningValue(var)
and use = ssaDef.getAUse(var))
select var, defExpr.getLocation().getStartLine() as dline, use.getLocation().getStartLine() as
—uline, defExpr

Now we can see the assigned expression in our results:

var | dline | uline | defExpr
3 5 alpha
9 14 beta

X 11 14 gamma

Extending the query to include allocations passed via a variable

Using our experiments above we can expand our simple implementation of MallocCall.getAllocatedSize().
With the following refinement, if the argument is an access to a variable, getAllocatedSize () returns a value
assigned to that variable instead of the variable access itself:

Expr getAllocatedSize() {
if this.getArgument(0) instanceof VariableAccess then
exists(LocalScopeVariable v, SsaDefinition ssaDef |
result = ssaDef.getAnUltimateDefiningValue(v)
and this.getArgument(0) = ssaDef.getAUse(v))
else
result = this.getArgument (0)

The completed query will now identify cases where the result of strlen is stored in a local variable before it is
used in a call to malloc. Here is the query in full:

import cpp

class MallocCall extends FunctionCall

{

(continues on next page)

3.8. Detecting a potential buffer overflow 87

Learning CodeQL, Release 1.24

(continued from previous page)

MallocCall() { this.getTarget().hasGlobalName("malloc") }

Expr getAllocatedSize() {
if this.getArgument(0) instanceof VariableAccess then
exists(LocalScopeVariable v, SsaDefinition ssaDef |
result = ssaDef.getAnUltimateDefiningValue(v)
and this.getArgument(0) = ssaDef.getAUse(v))
else
result = this.getArgument (0)

from MallocCall malloc
where malloc.getAllocatedSize() instanceof StrlenCall
select malloc, "This allocation does not include space to null-terminate the string."

3.8.4 Further reading
* CodeQL queries for C and C++

* Example queries for C and C++

CodeQL library reference for C and C++
* QL language reference

¢ CodeQL tools

3.9 Using the guards library in C and C++

You can use the CodeQL guards library to identify conditional expressions that control the execution of other parts
of a program in C and C++ codebases.

3.9.1 About the guards library

The guards library (defined in semmle.code.cpp.controlflow.Guards) provides a class GuardCondition rep-
resenting Boolean values that are used to make control flow decisions. A GuardCondition is considered to guard
a basic block if the block can only be reached if the GuardCondition is evaluated a certain way. For instance, in
the following code, x < 10 is a GuardCondition, and it guards all the code before the return statement.

if(x < 10) {
£(x);

} else if (x < 20) {
g(x);

} else {
h(x);

¥

return O;

88 Chapter 3. CodeQL for C and C++

https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/cpp/semmle/code/cpp/controlflow/Guards.qll/type.Guards\protect \T1\textdollar GuardCondition.html

Learning CodeQL, Release 1.24

3.9.2 The controls predicate

The controls predicate helps determine which blocks are only run when the GuardCondition evaluates a certain
way. guard.controls(block, testIsTrue) holds if block is only entered if the value of this condition is
testIsTrue.

In the following code sample, the call to isValid controls the calls to performAction and logFailure but not
the return statement.

if (isValid(accessToken)) {
performAction();
succeeded = 1;

} else {
logFailure();
succeeded = 0;

¥

return succeeded;

In the following code sample, the call to isValid controls the body of the if statement, and also the code after
the if.

if (!isValid(accessToken)) {
logFailure();
return O;

}

performAction() ;

return succeeded;

3.9.3 The ensuresEq and ensuresLt predicates

The ensuresEq and ensuresLt predicates are the main way of determining what, if any, guarantees the
GuardCondition provides for a given basic block.

The ensuresEq predicate

When ensuresEq(left, right, k, block, true) holds, then block is only executed if left was equal to
right + k at their last evaluation. When ensuresEq(left, right, k, block, false) holds, then block is
only executed if 1eft was not equal to right + k at their last evaluation.

The ensuresLt predicate

When ensuresLt(left, right, k, block, true) holds, then block is only executed if left was strictly
less than right + k at their last evaluation. When ensuresLt(left, right, k, block, false) holds, then
block is only executed if 1eft was greater than or equal to right + k at their last evaluation.

In the following code sample, the comparison on the first line ensures that index is less than size in the then
block, and that index is greater than or equal to size in the else block.

if (index < size) {
ret = array[index];
} else {
ret = nullptr

(continues on next page)

3.9. Using the guards library in C and C++ 89

Learning CodeQL, Release 1.24

(continued from previous page)

}

return ret;

3.9.4 The comparesEq and comparesLt predicates

The comparesEq and comparesLt predicates help determine if the GuardCondition evaluates to true.

The comparesEq predicate

comparesEq(left, right, k, true, testIsTrue) holds if left equals right + k when the expression
evaluates to testIsTrue.

The comparesLt predicate

comparesLt(left, right, k, isLessThan, testIsTrue) holds if left < right + k evaluates to
isLessThan when the expression evaluates to testIsTrue.

3.9.5 Further reading
* CodeQL queries for C and C++
* Example queries for C and C++
* CodeQL library reference for C and C++
* QL language reference

¢ CodeQL tools

3.10 Using range analysis for C and C++

You can use range analysis to determine the upper or lower bounds on an expression, or whether an expression
could potentially over or underflow.

3.10.1 About the range analysis library

The range analysis library (defined in semmle.code.cpp.rangeanalysis.SimpleRangeAnalysis) provides a
set of predicates for determining constant upper and lower bounds on expressions, as well as recognizing integer
overflows. For performance, the library performs automatic widening and therefore may not provide the tightest
possible bounds.

3.10.2 Bounds predicates

The upperBound and lowerBound predicates provide constant bounds on expressions. No conversions of the
argument are included in the bound. In the common case that your query needs to take conversions into account,
call them on the converted form, such as upperBound (expr.getFullyConverted()).

90 Chapter 3. CodeQL for C and C++

https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

3.10.3 Overflow predicates

exprMightOverflow and related predicates hold if the relevant expression might overflow, as determined by
the range analysis library. The convertedExprMightOverflow family of predicates will take conversions into
account.

3.10.4 Example

This query uses upperBound to determine whether the result of snprintf is checked when used in a loop.

from FunctionCall call, DataFlow::Node source, DataFlow::Node sink, Expr convSink
where
// the call is an snprintf with a string format argument
call.getTarget() .getName() = "snprintf" and
call.getArgument (2) .getValue() .regexpMatch(".*%s.*") and

// the result of the call influences its size argument in later iterations
TaintTracking: :localTaint (source, sink) and

source.asExpr() = call and

sink.asExpr() = call.getArgument(1l) and

// there is no fized bound on the snprintf's size argument
upperBound (convSink) = typeUpperBound(convSink.getType().getUnspecifiedType()) and

convSink = call.getArgument(1).getFullyConverted()

select call, upperBound(call.getArgument(1).getFullyConverted())

3.10.5 Further reading
* CodeQL queries for C and C++

* Example queries for C and C++

CodeQL library reference for C and C++
* QL language reference

* CodeQL tools

3.11 Hash consing and value numbering

You can use specialized CodeQL libraries to recognize expressions that are syntactically identical or compute the
same value at runtime in C and C++ codebases.

3.11.1 About the hash consing and value numbering libraries

In C and C++ databases, each node in the abstract syntax tree is represented by a separate object. This allows
both analysis and results display to refer to specific appearances of a piece of syntax. However, it is frequently
useful to determine whether two expressions are equivalent, either syntactically or semantically.

The hash consing library (defined in semmle. code.cpp.valuenumbering.HashCons) provides a mechanism for
identifying expressions that have the same syntactic structure. The global value numbering library (defined in

3.11. Hash consing and value numbering 91

https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

semmle.code.cpp.valuenumbering.GlobalValueNumbering) provides a mechanism for identifying expres-
sions that compute the same value at runtime. Both libraries partition the expressions in each function into
equivalence classes represented by objects. Each HashCons object represents a set of expressions with identical
parse trees, while GVN objects represent sets of expressions that will always compute the same value. For more
information, see Hash consing and Value numbering on Wikipedia.

3.11.2 Example C code

In the following C program, x + y and x + z will be assigned the same value number but different hash conses.

int x = 1;
int y = 2;
int z = y;
if(x +y ==x +2) {

However, in the next example, the uses of x + y will have different value numbers but the same hash cons.

int x = 1;

int y = 2;
if(x +y) {
}.

x = 2;
if(x +y) {
}.

3.11.3 Value numbering

The value numbering library (defined in semmle.code.cpp.valuenumbering.GlobalValueNumbering) pro-
vides a mechanism for identifying expressions that compute the same value at runtime. Value numbering is
useful when your primary concern is with the values being produced or the eventual machine code being run.
For instance, value numbering might be used to determine whether a check is being done against the same value
as the operation it is guarding.

The value numbering API

The value numbering library exposes its interface primarily through the GVN class. Each instance of GVN represents
a set of expressions that will always evaluate to the same value. To get an expression in the set represented by a
particular GVN, use the getAnExpr () member predicate.

To get the GVN of an Expr, use the globalValueNumber predicate.

Note: While the GVN class has toString and getLocation methods, these are only provided as debugging aids.
They give the toString and getLocation of an arbitrary Expr within the set.

92 Chapter 3. CodeQL for C and C++

https://en.wikipedia.org/wiki/Hash_consing
https://en.wikipedia.org/wiki/Value_numbering

Learning CodeQL, Release 1.24

Why not a predicate?

The obvious interface for this library would be a predicate equivalent (Expr el, Expr e2). However, this
predicate would be very large, with a quadratic number of rows for each set of equivalent expressions. By using
a class as an intermediate step, the number of rows can be kept linear, and therefore can be cached.

Example query

This query uses the GVN class to identify calls to strncpy where the size argument is derived from the source
rather than the destination

from FunctionCall strncpy, FunctionCall strlen
where
strncpy.getTarget () .hasGlobalName ("strncpy") and
strlen.getTarget () .hasGlobalName("strlen") and
globalValueNumber (strncpy.getArgument (1)) = globalValueNumber(strlen.getArgument(0)) and
strlen = strncpy.getArgument(2)
select ci, "This call to strncpy is bounded by the size of the source rather than the destination"

3.11.4 Hash consing

The hash consing library (defined in semmle. code. cpp.valuenumbering.HashCons) provides a mechanism for
identifying expressions that have the same syntactic structure. Hash consing is useful when your primary concern
is with the text of the code. For instance, hash consing might be used to detect duplicate code within a function.

The hash consing API

The hash consing library exposes its interface primarily through the HashCons class. Each instance of HashCons
represents a set of expressions within one function that have the same syntax (including referring to the same
variables). To get an expression in the set represented by a particular HashCons, use the getAnExpr () member
predicate.

Note: While the HashCons class has toString and getLocation methods, these are only provided as debugging
aids. They give the toString and getLocation of an arbitrary Expr within the set.

To get the HashCons of an Expr, use the hashCons predicate.

Example query

import cpp
import semmle.code.cpp.valuenumbering.HashCons

from IfStmt outer, IfStmt inner

where
outer.getElse+() = inner and
hashCons (outer.getCondition()) = hashCons(inner.getCondition())

select inner.getCondition(), "The condition of this if statement duplicates the condition of $@",
outer.getCondition(), "an enclosing if statement"

3.11. Hash consing and value numbering 93

Learning CodeQL, Release 1.24

3.11.5 Further reading

CodeQL queries for C and C++

Example queries for C and C++

CodeQL library reference for C and C++

QL language reference

CodeQL tools

Basic query for C and C++ code: Learn to write and run a simple CodeQL query using LGTM.

CodeQL library for C and C++: When analyzing C or C++ code, you can use the large collection of classes
in the CodeQL library for C and C++.

Functions in C and C++: You can use CodeQL to explore functions in C and C++ code.

Expressions, types, and statements in C and C++: You can use CodeQL to explore expressions, types, and
statements in C and C++ code to find, for example, incorrect assignments.

Conversions and classes in C and C++: You can use the standard CodeQL libraries for C and C++ to detect
when the type of an expression is changed.

Analyzing data flow in C and C++: You can use data flow analysis to track the flow of potentially malicious
or insecure data that can cause vulnerabilities in your codebase.

Refining a query to account for edge cases: You can improve the results generated by a CodeQL query by
adding conditions to remove false positive results caused by common edge cases.

Detecting a potential buffer overflow: You can use CodeQL to detect potential buffer overflows by checking
for allocations equal to strlen in C and C++.

Using the guards library in C and C++: You can use the CodeQL guards library to identify conditional
expressions that control the execution of other parts of a program in C and C++ codebases.

Using range analysis for C and C++: You can use range analysis to determine the upper or lower bounds on
an expression, or whether an expression could potentially over or underflow.

Hash consing and value numbering: You can use specialized CodeQL libraries to recognize expressions that
are syntactically identical or compute the same value at runtime in C and C++ codebases.

94

Chapter 3. CodeQL for C and C++

https://github.com/github/codeql/tree/master/cpp/ql/src
https://github.com/github/codeql/tree/master/cpp/ql/examples
https://help.semmle.com/qldoc/cpp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

CHAPTER

FOUR

CODEQL FOR C#

Experiment and learn how to write effective and efficient queries for CodeQL databases generated from C# code-
bases.

4.1 Basic query for C# code

Learn to write and run a simple CodeQL query using LGTM.

4.1.1 About the query

The query were going to run performs a basic search of the code for if statements that are redundant, in the
sense that they have an empty then branch. For example, code such as:

if (error) { }

4.1.2 Running the query
1. In the main search box on LGTM.com, search for the project you want to query. For tips, see Searching.
2. Click the project in the search results.
3. Click Query this project.
This opens the query console. (For information about using this, see Using the query console.)
Note

Alternatively, you can go straight to the query console by clicking Query console (at the top of
any page), selecting C# from the Language drop-down list, then choosing one or more projects
to query from those displayed in the Project drop-down list.

4. Copy the following query into the text box in the query console:

import csharp

from IfStmt ifstmt, BlockStmt block

where ifstmt.getThen() = block and
block.isEmpty()

select ifstmt, "This 'if' statement is redundant."

95

https://lgtm.com/help/lgtm/searching
https://lgtm.com/help/lgtm/using-query-console

Learning CodeQL, Release 1.24

LGTM checks whether your query compiles and, if all is well, the Run button changes to green to indicate
that you can go ahead and run the query.

. Click Run.

The name of the project you are querying, and the ID of the most recently analyzed commit to the project,
are listed below the query box. To the right of this is an icon that indicates the progress of the query

operation:
Progress: 22%
S

Note
Your query is always run against the most recently analyzed commit to the selected project.

The query will take a few moments to return results. When the query completes, the results are displayed
below the project name. The query results are listed in two columns, corresponding to the two expressions
in the select clause of the query. The first column corresponds to the expression ifstmt and is linked to
the location in the source code of the project where ifstmt occurs. The second column is the alert message.

Example query results

Note

An ellipsis () at the bottom of the table indicates that the entire list is not displayedclick it to
show more results.

. If any matching code is found, click a link in the i fstmt column to view the if statement in the code viewer.

The matching if statement is highlighted with a yellow background in the code viewer. If any code in the
file also matches a query from the standard query library for that language, you will see a red alert message
at the appropriate point within the code.

About the query structure

After the initial import statement, this simple query comprises three parts that serve similar purposes to the
FROM, WHERE, and SELECT parts of an SQL query.

96

Chapter 4. CodeQL for C#

https://lgtm.com/query/1214010107827821393/

Learning CodeQL, Release 1.24

Query part

Purpose

Details

import csharp

Imports the standard CodeQL li-
braries for C#.

Every query begins with one or
more import statements.

from IfStmt ifstmt,
BlockStmt block

Defines the variables for the query.
Declarations are of the form:
<type> <variable name>

We use:
e an IfStmt variable for if
statements
¢ aBlockStmt variable for the
then block

where ifstmt.getThen() =
block and block.isEmpty()

Defines a condition on the vari-
ables.

ifstmt.getThen() = block re-
lates the two variables. The block
must be the then branch of the if
statement.

block.isEmpty() states that the
block must be empty (that is, it
contains no statements).

select ifstmt, "This 'if'
statement is redundant."

Defines what to report for each
match.
select statements for queries that

Reports the resulting if statement
with a string that explains the
problem.

are used to find instances of
poor coding practice are always

in the form: select <program

element>, "<alert message>"

4.1.3 Extend the query

Query writing is an inherently iterative process. You write a simple query and then, when you run it, you discover
examples that you had not previously considered, or opportunities for improvement.

Remove false positive results

Browsing the results of our basic query shows that it could be improved. Among the results you are likely to find
examples of if statements with an else branch, where an empty then branch does serve a purpose. For example:

if (...)
{

}
else if (option == "-verbose")
{
// nothing to do - handled earlier

}

else

{

error("unrecognized option");

In this case, identifying the if statement with the empty then branch as redundant is a false positive. One solution
to this is to modify the query to ignore empty then branches if the if statement has an else branch.

4.1. Basic query for C# code 97

Learning CodeQL, Release 1.24

To exclude if statements that have an else branch:

1. Add the following to the where clause:

and not exists(ifstmt.getElse())

The where clause is now:

where ifstmt.getThen() = block and
block.isEmpty() and
not exists(ifstmt.getElse())

2. Click Run.
There are now fewer results because if statements with an else branch are no longer included.

See this in the query console

4.1.4 Further reading
* CodeQL queries for C#
* Example queries for C#
* CodeQL library reference for C#
* QL language reference

¢ CodeQL tools

4.2 CodeQL library for C#

When youre analyzing a C# program, you can make use of the large collection of classes in the CodeQL library
for C#.

4.2.1 About the CodeQL libraries for C#

There is an extensive core library for analyzing CodeQL databases extracted from C# projects. The classes in
this library present the data from a database in an object-oriented form and provide abstractions and predicates
to help you with common analysis tasks. The library is implemented as a set of QL modules, that is, files with
the extension .qll. The module csharp.qll imports all the core C# library modules, so you can include the
complete library by beginning your query with:

import csharp

Since this is required for all C# queries, its omitted from code snippets below.

The core library contains all the program elements, including files, types, methods, variables, statements, and
expressions. This is sufficient for most queries, however additional libraries can be imported for bespoke func-
tionality such as control flow and data flow. For information about these additional libraries, see CodeQL for
C#.

98 Chapter 4. CodeQL for C#

https://lgtm.com/query/6233102733683510530/
https://github.com/github/codeql/tree/master/csharp/ql/src
https://github.com/github/codeql/tree/master/csharp/ql/examples
https://help.semmle.com/qldoc/csharp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

Class hierarchies
Each section contains a class hierarchy, showing the inheritance structure between CodeQL classes. For example:
¢ Expr
— Operation
ArithmeticOperation

- UnaryArithmeticOperation
- UnaryMinusExpr, UnaryPlusExpr
- MutatorQOperation
- IncrementOperation
- PreIncrExpr, PostIncrExpr
- DecrementOperation
- PreDecrExpr, PostDecrExpr
- BinaryArithmeticOperation
- AddExpr, SubExpr, MulExpr, DivExpr, RemExpr

This means that the class AddExpr extends class BinaryArithmeticOperation, which in turn extends
class ArithmeticOperation and so on. If you want to query any arithmetic operation, use the class
ArithmeticOperation, but if you specifically want to limit the query to addition operations, use the class
AddExpr.

Classes can also be considered to be sets, and the extends relation between classes defines a subset. Every
member of class AddExpr is also in the class BinaryArithmeticOperation. In general, classes overlap and an
entity can be a member of several classes.

This overview omits some of the less important or intermediate classes from the class hierarchy.

Each class has predicates, which are logical propositions about that class. They also define navigable rela-
tionships between classes. Predicates are inherited, so for example the AddExpr class inherits the predicates
getLeftOperand() and getRightOperand() from BinaryArithmeticOperation, and getType() from class
Expr. This is similar to how methods are inherited in object-oriented programming languages.

In this overview, we present the most common and useful predicates. For the complete list of predicates available
on each class, you can look in the CodeQL source code, use autocomplete in the editor, or see the C# reference.
Exercises

Each section in this topic contains exercises to check your understanding.

Exercise 1: Simplify this query:

from BinaryArithmeticOperation op
where op instanceof AddExpr
select op

(Answer)

4.2. CodeQL library for C# 99

https://help.semmle.com/qldoc/csharp

Learning CodeQL, Release 1.24

4.2.2 Files

Files are represented by the class File, and directories by the class Folder. The database contains all of the source
files and assemblies used during the compilation.

Class hierarchy
* File - any file in the database (including source files, XML and assemblies)
— SourceFile - a file containing source code

* Folder - a directory

Predicates
* getName() - gets the full path of the file (for example, C:\Temp\test.cs).
* getNumberOfLines () - gets the number of lines (for source files only).
* getShortName () - gets the name of the file without the extension (for example, test).
* getBaseName () - gets the name and extension of the file (for example, test.cs).

e getParent () - gets the parent directory.

Examples

Count the number of source files:

select count(SourceFile f)

Count the number of lines of code, excluding the directory external:

select sum(SourceFile f |
not exists(Folder external | external.getShortName() = "external" |
external.getAFolder*() .getAFile() = £) |
f.getNumberOfLines())

Exercises

Exercise 2: Write a query to find the source file with the largest number of lines. Hint: Find the source file with
the same number of lines as the max number of lines in any file. (Answer)

4.2.3 Elements

The class Element is the base class for all parts of a C# program, and its the root of the element class hierarchy.
All program elements (such as types, methods, statements, and expressions) ultimately derive from this common
base class.

Element forms a hierarchical structure of the program, which can be navigated using the getParent() and
getChild () predicates. This is much like an abstract syntax tree, and also applies to elements in assemblies.

100 Chapter 4. CodeQL for C#

https://help.semmle.com/qldoc/csharp/semmle/code/csharp/File.qll/type.File\protect \T1\textdollar File.html
https://help.semmle.com/qldoc/csharp/semmle/code/csharp/File.qll/type.File\protect \T1\textdollar Folder.html
https://help.semmle.com/qldoc/csharp/semmle/code/cil/Element.qll/type.Element\protect \T1\textdollar Element.html

Learning CodeQL, Release 1.24

Predicates

The Element class provides common functionality for all program elements, including:
* getLocation() - gets the text span in the source code.
e getFile() - gets the File containing the Element.
* getParent() - gets the parent Element, if any.

* getAChild() - gets a child Element of this element, if any.

Examples

To list all elements in Main. cs, their QL class and location:

from Element e
where e.getFile() .getShortName() = "Main"
select e, e.getAQlClass(), e.getLocation()

Note that getAQlClass () is available on all entities and is a useful way to figure out the QL class of something.
Often the same element will have several classes which are all returned by getAQ1lClass().

4.2.4 Locations

Location represents a section of text in the source code, or an assembly. All elements have a Location obtained
by their getLocation() predicate. A SourceLocation represents a span of text in source code, whereas an
Assembly location represents a referenced assembly.

Sometimes elements have several locations, for example if they occur in both source code and an assembly. In
this case, only the SourceLocation is returned.

Class hierarchy
* Location
— SourceLocation

— Assembly

Predicates
Some predicates of Location include:
* getFile() - gets the File.
* getStartLine() - gets the first line of the text.
e getEndLine() - gets the last line of the text.
* getStartColumn() - gets the column of the start of the text.

* getEndColumn() - gets the column of the end of the text.

4.2. CodeQL library for C# 101

https://help.semmle.com/qldoc/csharp/semmle/code/csharp/Location.qll/type.Location\protect \T1\textdollar Location.html

Learning CodeQL, Release 1.24

Examples

Find all elements that are one character wide:

from Element e, Location 1
where 1 = e.getLocation()

and 1.getStartLine() = 1.getEndLine()

and 1.getStartColumn() = 1.getEndColumn()
select e, "This element is a single character."

4.2.5 Declarations

Declaration is the common class of all entities defined in the program, such as types, methods, variables etc. The
database contains all declarations from the source code and all referenced assemblies.

Class hierarchy
¢ Element
— Declaration

Callable

UnboundGeneric

ConstructedGeneric

Modifiable - a declaration which can have a modifier (for example public)
- Member - a declaration that is member of a type

Assignable - an element that can be assigned to
- Variable
- Property
- Indexer

- Event

Predicates
Useful member predicates on Declaration include:
* getDeclaringType() - gets the type containing the declaration, if any.
* getName () /hasName(string) - gets the name of the declared entity.
e isSourceDeclaration() - whether the declaration is source code and is not a constructed type/method.

* getSourceDeclaration() - gets the original (unconstructed) declaration.

Examples

Find declarations containing a username:

102 Chapter 4. CodeQL for C#

https://help.semmle.com/qldoc/csharp/semmle/code/cil/Declaration.qll/type.Declaration\protect \T1\textdollar Declaration.html

Learning CodeQL, Release 1.24

from Declaration decl
where decl.getName().regexpMatch(" [uU]ser([Nn]ame)?")
select decl, "A username."

4.2.6 Variables

The class Variable represents C# variables, such as fields, parameters and local variables. The database contains
all variables from the source code, as well as all fields and parameters from assemblies referenced by the program.

Class hierarchy
¢ Element
— Declaration
Variable - any type of variable
- Field - afield in a class/struct
- MemberConstant - a const field
- EnumConstant - a field in an enum
- LocalScopeVariable - a variable whose scope is limited to a single Callable
- LocalVariable - a local variable in a Callable
- LocalConstant - a locally defined constant in a Callable

- Parameter - a parameter to a Callable

Predicates

Some common predicates on Variable are:
* getType() - gets the Type of this variable.
e getAnAccess() - gets an expression that accesses (reads or writes) this variable, if any.
* getAnAssignedValue() - gets an expression that is assigned to this variable, if any.

* getInitializer() - gets the expression used to initialize the variable, if any.

Examples

Find all unused local variables:

from LocalVariable v
where not exists(v.getAnAccess())
select v, "This local variable is unused."

4.2.7 Types

Types are represented by the CodeQL class Type and consist of builtin types, interfaces, classes, structs, enums,
and type parameters. The database contains types from the program and all referenced assemblies including
mscorlib and the .NET framework.

4.2. CodeQL library for C# 103

https://help.semmle.com/qldoc/csharp/semmle/code/cil/Variable.qll/type.Variable\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/csharp/semmle/code/cil/Type.qll/type.Type\protect \T1\textdollar Type.html

Learning CodeQL, Release 1.24

The builtin types (object, int, double etc.) have corresponding types (System.0Object, System.Int32 etc.)
in mscorlib.

Class ValueOrRefType represents defined types, such as a class, struct, interface or enum.

Class hierarchy
¢ Element
— Declaration

Modifiable - a declaration which can have a modifier (for example public)
- Member - a declaration that is member of a type
- Type - all types
- ValueOrRefType - a defined type
- ValueType - a value type (see below for further hierarchy)
- RefType - a reference type (see below for further hierarchy)
- NestedType - a type defined in another type
- VoidType - void
- PointerType - a pointer type

The ValueType class extends further:
* ValueType - a value type
— SimpleType - a simple built-in type

BoolType - bool

CharType - char

IntegralType
- UnsignedIntegralType
- ByteType - byte
- UShortType - unsigned short/System.UInt16
- UIntType - unsigned int/System.UInt32
- ULongType - unsigned long/System.UInt64
- SignedIntegralType
- SByteType - signed byte
- ShortType - short/System.Int16
- IntType - int/System. Int32
- LongType - long/System.Int64
- FloatingPointType
- FloatType - float/System.Single

- DoubleType - double/System.Double

104 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

- DecimalType - decimal/System.Decimal
Enum - an enum
Struct - a struct
NullableType

ArrayType

The RefType class extends further:

RefType
— Class - aclass
AnonymousClass
ObjectType - object/System.0Object
StringType - string/System.String

Interface - an interface

DelegateType

NullType - the type of null
— DynamicType - dynamic

NestedType - a type defined in another type

These class hierarchies omit generic types for simplicity.

Predicates

Useful members of ValueOrRef Type include:

getQualifiedName () /hasQualifiedName (string) - gets the qualified name of the type (for example,
"System.String").

getABaseInterface() - gets an immediate interface of this type, if any.
getABaseType () - gets an immediate base class or interface of this type, if any.
getBaseClass () - gets the immediate base class of this type, if any.
getASubType () - gets an immediate subtype, a type which directly inherits from this type, if any.
getAMember () - gets any member (field/method/property etc), if any.
getAMethod () - gets a method, if any.

getAProperty() - gets a property, if any.

getAnIndexer () - gets an indexer, if any.

getAnEvent () - gets an event, if any.

getAnOperator () - gets an operator, if any.

getANestedType () - gets a nested type.

getNamespace () - gets the enclosing namespace.

4.2,

CodeQL library for C# 105

Learning CodeQL, Release 1.24

Examples

Find all members of System.0Object:

from ObjectType object
select object.getAMember ()

Find all types which directly implement System.Collections.IEnumerable:

from Interface ienumerable
where ienumerable.hasQualifiedName("System.Collections.IEnumerable")
select ienumerable.getASubType ()

List all simple types in the System namespace:

select any(SimpleType t | t.getNamespace().hasName("System"))

Find all variables of type PointerType:

from Variable v
where v.fromSource()

and v.getType() instanceof PointerType
select v

List all classes in source files:

from Class c
where c.fromSource()
select c

Exercises
Exercise 3: Write a query to list the methods in string. (Answer)
Exercise 4: Adapt the example to find all types which indirectly implement IEnumerable. (Answer)

Exercise 5: Write a query to find all classes starting with the letter A. (Answer)

4.2.8 Callables

Callables are represented by the class Callable and are anything that can be called independently, such as methods,
constructors, destructors, operators, anonymous functions, indexers, and property accessors.

The database contains all of the callables in your program and in all referenced assemblies.

Class hierarchy

¢ Element
— Declaration
Callable
+ Method

106 Chapter 4. CodeQL for C#

https://help.semmle.com/qldoc/csharp/semmle/code/csharp/Callable.qll/type.Callable\protect \T1\textdollar Callable.html

Learning CodeQL, Release 1.24

- ExtensionMethod

- Constructor

- StaticConstructor

- InstanceConstructor
- Destructor

- Operator

- UnaryOperator

- PlusOperator, MinusOperator, NotOperator, ComplementQOperator,
IncrementOperator, DecrementOperator, FalseOperator, TrueOperator

- BinaryQOperator

- AddOperator, SubOperator, MulOperator, DivOperator, RemOperator,
AndOperator, OrOperator, ZXorOperator, LShiftOperator, RShiftOperator,
EQOperator, NEOperator, LTOperator, GTOperator, LEOperator, GEOperator

- ConversionOperator

- ImplicitConversionOperator
- ExplicitConversionOperator
- AnonymousFunctionExpr

- LambdaExpr

- AnonymousMethodExpr

- Accessor

+ Getter

- Setter

- EventAccessor

- AddEventAccessor, RemoveEventAccessor

Predicates
Here are a few useful predicates on the Callable class:
* getParameter(int)/getAParameter () - gets a parameter.
* calls(Callable) - whether theres a direct call from one callable to another.
* getReturnType() - gets the return type.
* getBody () /getExpressionBody () - gets the body of the callable.
Since Callable extends Declaration, it also has predicates from Declaration, such as:
¢ getName() /hasName (string)
* getSourceDeclaration()

e getName ()

4.2. CodeQL library for C# 107

Learning CodeQL, Release 1.24

* getDeclaringType()
Methods have additional predicates, including:
* getAnQOverridee() - gets a method that is immediately overridden by this method.
* getAnOverrider () - gets a method that immediately overrides this method.
e getAnImplementee() - gets an interface method that is immediately implemented by this method.

* getAnImplementor () - gets a method that immediately implements this interface method.

Examples

List all types which override ToString:

from Method m
where m.hasName("ToString")
select m

Find methods that look like ToString methods but dont override Object.ToString:

from Method toString, Method falseToString
where toString.hasQualifiedName("System.0Object.ToString")
and falseToString.getName().toLowerCase() = "tostring"
and not falseToString.overrides*(toString)
and falseToString.getNumberOfParameters() = 0
select falseToString, "This method looks like it overrides Object.ToString but it doesn't."

Find all methods which take a pointer type:

from Method m
where m.getAParameter().getType() instanceof PointerType
select m, "This method uses pointers."

Find all classes which have a destructor but arent disposable:

from Class c
where c.getAMember() instanceof Destructor

and not c.getABaseType*().hasQualifiedName("System.IDisposable")
select c, "This class has a destructor but is not IDisposable."

Find Main methods which are not private:

from Method m
where m.hasName("Main")
and not m.isPrivate()
select m, "Main method should be private."

4.2.9 Statements

Statements are represented by the class Stmt and make up the body of methods (and other callables). The
database contains all statements in the source code, but does not contain any statements from referenced assem-
blies where the source code is not available.

108 Chapter 4. CodeQL for C#

https://help.semmle.com/qldoc/csharp/semmle/code/csharp/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html

Learning CodeQL, Release 1.24

Class hierarchy

¢ Element
— ControlFlowElement
Stmt
- BlockStmt -{ ... }
- ExprStmt
- SelectionStmt
- IfStmt - if

- SwitchStmt - switch
- LabeledStmt
- ConstCase

- DefaultCase - default

- LabelStmt

- LoopStmt

- WhileStmt - while(...) { ... }
- DoStmt -do { ... } while(...)

- ForStmt - for

- ForEachStmt - foreach

- JumpStmt

- BreakStmt - break

- ContinueStmt - continue

- GotoStmt - goto

- GotoLabelStmt

+ GotoCaseStmt

- GotoDefaultStmt

- ThrowStmt - throw

- ReturnStmt - return

© YieldStmt

- YieldBreakStmt - yield break
© YieldReturnStmt - yield return
- TryStmt - try

- CatchClause - catch

- SpecificCatchClause

- GeneralCatchClause

4.2. CodeQL library for C# 109

Learning CodeQL, Release 1.24

- CheckedStmt - checked

- UncheckedStmt - unchecked
- LockStmt - lock

- UsingStmt - using

- LocalVariableDeclStmt

- LocalConstantDeclStmt

- EmptyStmt - ;

- UnsafeStmt - unsafe

- FixedStmt - fixed

Examples

Find long methods:

from Method m
where m.getBody() . (BlockStmt) . getNumber0fStmts() >= 100
select m, "This is a long method!"

Find for(;;):

from ForStmt for
where not exists(for.getAnInitializer())
and not exists(for.getUpdate(_))
and not exists(for.getCondition())
select for, "Infinite loop."

Find catch(NullDefererenceException):

from SpecificCatchClause catch
where catch.getCaughtExceptionType() .hasQualifiedName("System.NullReferenceException")
select catch, "Catch NullReferenceException."

Find an if statement with a constant condition:

from IfStmt ifStmt
where ifStmt.getCondition() .hasValue()
select ifStmt, "This 'if' statement is constant."

Find an if statement with an empty then block:

from IfStmt ifStmt
where ifStmt.getThen().(BlockStmt) .isEmpty()
select ifStmt, "If statement with empty 'then' block."

The (BlockStmt) is an inline cast, which restricts the query to cases where the result of getThen () has the QL
class BlockStmt, and allows predicates on BlockStmt to be used, such as isEmpty ().

110 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

Exercises
Exercise 6: Write a query to list all empty methods. (Answer)
Exercise 7: Modify the last example to also detect empty statements (;) in the then block. (Answer)

Exercise 8: Modify the last example to exclude chains of if statements, where the else part is another if
statement. (Answer)

4.2.10 Expressions

The Expr class represents all C# expressions in the program. An expression is something producing a value such
as a+b or new List<int>(). The database contains all expressions from the source code, but no expressions
from referenced assemblies where the source code is not available.

The Access class represents any use or cross-reference of another Declaration such a variable, property, method
or field. The getTarget () predicate gets the declaration being accessed.

The Call class represents a call to a Callable, for example to a Method or an Accessor, and the getTarget ()
method gets the Callable being called. The Operation class consists of arithmetic, bitwise operations and
logical operations.

Some expressions use a qualifier, which is the object on which the expression operates. A typical example is a
MethodCall. In this case, the getQualifier() predicate is used to get the expression on the left of the ., and
getArgument (int) is used to get the arguments of the call.

Class hierarchy
¢ Element
— ControlFlowElement
Expr
- LocalVariableDeclExpr
- LocalConstantDeclExpr
- Operation
- UnaryOperation
- SizeofExpr, PointerIndirectionExpr, AddressOfExpr
- BinaryOperation
- ComparisonOperation
- EqualityOperation
- EQExpr, NEExpr
- RelationalOperation
- GTExpr, LTExpr, GEExpr, LEExpr
- Assignment
- AssignOperation

- AddOrRemoveEventExpr

4.2. CodeQL library for C# 111

https://help.semmle.com/qldoc/csharp/semmle/code/csharp/exprs/Expr.qll/type.Expr\protect \T1\textdollar Expr.html

Learning CodeQL, Release 1.24

- AddEventExpr

- RemoveEventExpr

- AssignArithmeticOperation

- AssignAddExpr, AssignSubExpr, AssignMulExpr, AssignDivExpr, AssignRemExpr
- AssignBitwiseOperation

- AssignAndExpr, AssignOrExpr, AssignXorExpr, Assignl.ShiftExpr,

AssignRShiftExpr

- AssignExpr

- MemberInitializer

- ArithmeticOperation

- UnaryArithmeticOperation

- UnaryMinusExpr, UnaryPlusExpr

+ MutatorOperation

- IncrementOperation

- PreIncrExpr, PostIncrExpr

- DecrementOperation

- PreDecrExpr, PostDecrExpr

- BinaryArithmeticOperation

- AddExpr, SubExpr, MulExpr, DivExpr, RemExpr
- BitwiseOperation

- UnaryBitwiseOperation

- ComplementOperation

+ BinaryBitwiseOperation

- LShiftExpr, RShiftExpr, BitwiseAndExpr, BitwiseOrExpr, BitwiseXorExpr
- LogicalOperation

- UnaryLogicalOperation

- LogicalNotOperation

- BinaryLogicalOperation

- LogicalAndExpr, LogicalOrExpr, NullCoalescingExpr
- ConditionalExpr

- ParenthesisedExpr, CheckedExpr, UncheckedExpr, IsExpr, AsExpr,

CastExpr, TypeofExpr, DefaultValueExpr, AwaitExpr, NameofExpr,
InterpolatedStringExpr

- Access

- ThisAccess

112

Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

- BaseAccess

+ MemberAccess

+ MethodAccess

- VirtualMethodAccess

- FieldAccess, PropertyAccess, IndexerAccess, EventAccess, MethodAccess
- AssignableAccess

- VariableAccess

- ParameterAccess

- LocalVariableAccess

- LocalScopeVariableAccess
- FieldAccess

- MemberConstantAccess
- PropertyAccess

- TrivialPropertyAccess
- VirtualPropertyAccess
+ IndexerAccess

+ VirtualIndexerAccess
- EventAccess

+ VirtualEventAccess

- TypeAccess

- ArrayAccess

- Call

- PropertyCall

+ IndexerCall

- EventCall

+ MethodCall

+ VirtualMethodCall

- ElementInitializer

- ConstructorInitializer
- OperatorCall

- MutatorOperatorCall

- DelegateCall

- ObjectCreation

- DefaultValueTypeObjectCreation

4.2. CodeQL library for C# 113

Learning CodeQL, Release 1.24

- TypeParameterObjectCreation

- AnonymousObjectCreation

- ObjectOrCollectionInitializer
- ObjectInitializer

- CollectionInitializer

- DelegateCreation

- ExplicitDelegateCreation, ImplicitDelegateCreation
+ ArrayInitializer

- ArrayCreation

- AnonymousFunctionExpr

- LambdaExpr

+ AnonymousMethodExpr

- Literal

- BoolLiteral, CharLiteral, IntegerLiteral, IntLiteral, LongLiteral,
UIntLiteral, ULongLiteral, ReallLiteral, FloatLiteral, DoubleLiteral,
DecimalLiteral, StringlLiteral, NullLiteral

Predicates

Useful predicates on Expr include:

getType () - gets the Type of the expression.

getValue () - gets the compile-time constant, if any.

hasValue() - whether the expression has a compile-time constant.
getEnclosingStmt () - gets the statement containing the expression, if any.
getEnclosingCallable () - gets the callable containing the expression, if any.
stripCasts() - remove all explicit or implicit casts.

isImplicit() - whether the expression was implicit, such as an implicit this qualifier (ThisAccess).

Examples

Find calls to String.Format with just one argument:

from MethodCall c
where c.getTarget() .hasQualifiedName("System.String.Format")

and c.getNumberOfArguments() = 1

select c, "Missing arguments to 'String.Format'.

Find all comparisons of floating point values:

114

Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

from ComparisonOperation cmp
where (cmp instanceof EQExpr or cmp instanceof NEExpr)

and cmp.getAnOperand() .getType() instanceof FloatingPointType
select cmp, "Comparison of floating point values."

Find hard-coded passwords:

from Variable v, string value

where v.getName() .regexpMatch(" [pP]ass (word|wd|)")
and value = v.getAnAssignedValue().getValue()

select v, "Hard-coded password '" + value + "'."

Exercises

Exercise 9: Limit the previous query to string types. Exclude empty passwords or null passwords. (Answer)

4.2.11 Attributes

C# attributes are represented by the class Attribute. They can be present on many C# elements, such as classes,
methods, fields, and parameters. The database contains attributes from the source code and all assembly refer-
ences.

The attribute of any Element can be obtained via getAnAttribute (), whereas if you have an attribute, you can
find its element via getTarget (). These two query fragments are identical:

attribute = element.getAnAttribute()
element = attribute.getTarget()

Class hierarchy
¢ Element

— Attribute

Predicates
e getTarget () - gets the Element to which this attribute applies.
e getArgument (int) - gets the given argument of the attribute.

* getType() - gets the type of this attribute. Note that the class name must end in "Attribute".

Examples

Find all obsolete elements:

from Element e, Attribute attribute
where e = attribute.getTarget()
and attribute.getType() .hasName("ObsoleteAttribute")
select e, "This is obsolete because " + attribute.getArgument(0).getValue()

Model NUnit test fixtures:

4.2. CodeQL library for C# 115

https://help.semmle.com/qldoc/csharp/semmle/code/cil/Attribute.qll/type.Attribute\protect \T1\textdollar Attribute.html

Learning CodeQL, Release 1.24

class TestFixture extends Class
{
TestFixture() {
this.getAnAttribute() .getType() .hasName("TestFixtureAttribute")
}

TestMethod getATest() {
result = this.getAMethod()

class TestMethod extends Method
{
TestMethod() {
this.getAnAttribute().getType () .hasName ("TestAttribute")
}

from TestFixture f
select f, f.getATest()

Exercises

Exercise 10: Write a query to find just obsolete methods. (Answer)

Exercise 11: Write a query to find all places where the Obsolete attribute is used without a reason string (that
is, [Obsoletel). (Answer)

Exercise 12: In the first example, what happens if the Obsolete attribute doesnt have a reason string? How could
the query be fixed to accommodate this? (Answer)

4.2.12 Answers

Exercise 1

from AddExpr op
select op

or

select any(AddExpr op)

Exercise 2

from File f
where f.getNumberOfLines() = max(any(File g).getNumberOfLines())
select f

116 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

Exercise 3

from StringType s
select s.getAMethod()

Exercise 4

from Interface ienumerable
where ienumerable.hasQualifiedName("System.Collections.IEnumerable")
select ienumerable.getASubType*()

Exercise 5

from Class a
where a.getName().toLowerCase() .matches("aJ,")
select a

Exercise 6

select any(Method m | m.getBody().(BlockStmt) .isEmpty())

Exercise 7

from IfStmt ifStmt
where ifStmt.getThen().(BlockStmt).isEmpty() or ifStmt.getThen() instanceof EmptyStmt
select ifStmt, "If statement with empty 'then' block."

Exercise 8

from IfStmt ifStmt

where (ifStmt.getThen().(BlockStmt).isEmpty() or ifStmt.getThen() instanceof EmptyStmt)
and not ifStmt.getElse() instanceof IfStmt

select ifStmt, "If statement with empty 'then' block."

Exercise 9

from Variable v, StringlLiteral value
where v.getName() .regexpMatch(" [pP]lass (word|wd|)")
and value = v.getAnAssignedValue()
and value.getValue() != ""
select v, "Hard-coded password '" + value.getValue() + "'."

Exercise 10

4.2. CodeQL library for C#

117

Learning CodeQL, Release 1.24

from Method method, Attribute attribute
where method = attribute.getTarget()
and attribute.getType() .hasName("ObsoleteAttribute")
select method, "This is obsolete because " + attribute.getArgument(0).getValue()

Exercise 11

from Attribute attribute
where attribute.getType() .hasName("ObsoleteAttribute")
and not exists(attribute.getArgument (0))
select attribute, "Missing reason in 'Obsolete' attribute."

Exercise 12
The query does not return results where the argument is missing.

Here is the fixed version:

from Element e, Attribute attribute, string reason
where e = attribute.getTarget()
and attribute.getType() .hasName("ObsoleteAttribute")
and if exists(attribute.getArgument(0))
then reason = attribute.getArgument(0).getValue()
else reason = "(not given)"
select e, "This is obsolete because " + reason

4.2.13 Further reading
* CodeQL queries for C#

* Example queries for C#

CodeQL library reference for C#
* QL language reference

¢ CodeQL tools

4.3 Analyzing data flow in C#

You can use CodeQL to track the flow of data through a C# program to its use.

4.3.1 About this article

This article describes how data flow analysis is implemented in the CodeQL libraries for C# and includes examples
to help you write your own data flow queries. The following sections describe how to use the libraries for local
data flow, global data flow, and taint tracking. For a more general introduction to modeling data flow, see About
data flow analysis.

118 Chapter 4. CodeQL for C#

https://github.com/github/codeql/tree/master/csharp/ql/src
https://github.com/github/codeql/tree/master/csharp/ql/examples
https://help.semmle.com/qldoc/csharp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

4.3.2 Local data flow

Local data flow is data flow within a single method or callable. Local data flow is easier, faster, and more precise
than global data flow, and is sufficient for many queries.

Using local data flow

The local data flow library is in the module DataF1low, which defines the class Node denoting any element that data
can flow through. Nodes are divided into expression nodes (ExprNode) and parameter nodes (ParameterNode).
You can map between data flow nodes and expressions/parameters using the member predicates asExpr and
asParameter:

class Node {
/** Gets the expression corresponding to this mode, if any. */
Expr asExpr() { ... }

/*% Gets the parameter corresponding to this node, if any. */
Parameter asParameter() { ... }

or using the predicates exprNode and parameterNode:

J**
* Gets the node corresponding to expression ‘e’ .
*/

ExprNode exprNode(Expr e) { ... }

J**

* Gets the node corresponding to the walue of parameter “p° at function entry.
*/

ParameterNode parameterNode(Parameter p) { ... }

The predicate localFlowStep(Node nodeFrom, Node nodeTo) holds if there is an immediate data flow edge
from the node nodeFrom to the node nodeTo. You can apply the predicate recursively, by using the + and *
operators, or you can use the predefined recursive predicate localFlow.

For example, you can find flow from a parameter source to an expression sink in zero or more local steps:

DataFlow: :localFlow(DataFlow: : parameterNode (source), DataFlow: :exprNode(sink))

Using local taint tracking

Local taint tracking extends local data flow by including non-value-preserving flow steps. For example:

var temp = Xx;
var y = temp + ", " + temp;

If x is a tainted string then y is also tainted.

The local taint tracking library is in the module TaintTracking. Like local data flow, a predicate
localTaintStep(DataFlow: :Node nodeFrom, DataFlow::Node nodeTo) holds if there is an immediate taint

4.3. Analyzing data flow in C# 119

Learning CodeQL, Release 1.24

propagation edge from the node nodeFrom to the node nodeTo. You can apply the predicate recursively, by using
the + and * operators, or you can use the predefined recursive predicate localTaint.

For example, you can find taint propagation from a parameter source to an expression sink in zero or more local
steps:

TaintTracking: :localTaint (DataFlow: :parameterNode (source), DataFlow: :exprNode (sink))

Examples

This query finds the filename passed to System.I0.File.0Open:

import csharp

from Method fileOpen, MethodCall call

where fileOpen.hasQualifiedName("System.IO.File.Open")
and call.getTarget() = fileOpen

select call.getArgument(0)

Unfortunately this will only give the expression in the argument, not the values which could be passed to it. So
we use local data flow to find all expressions that flow into the argument:

import csharp

from Method fileOpen, MethodCall call, Expr src
where fileOpen.hasQualifiedName("System.IO.File.Open")

and call.getTarget() = fileOpen

and DataFlow::localFlow(DataFlow: :exprNode(src), DataFlow: :exprNode(call.getArgument (0)))
select src

Then we can make the source more specific, for example an access to a public parameter. This query finds instances
where a public parameter is used to open a file:

import csharp

from Method fileOpen, MethodCall call, Parameter p

where fileOpen.hasQualifiedName("System.IO.File.Open")
and call.getTarget() = fileOpen
and DataFlow::localFlow(DataFlow: :parameterNode(p), DataFlow::exprNode(call.getArgument(0)))
and call.getEnclosingCallable() . (Member) .isPublic()

select p, "Opening a file from a public method."

This query finds calls to String.Format where the format string isnt hard-coded:

import csharp

from Method format, MethodCall call, Expr formatString
where format.hasQualifiedName("System.String.Format")
and call.getTarget() = format
and formatString = call.getArgument(0)
and formatString.getType() instanceof StringType

(continues on next page)

120 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

(continued from previous page)

and not exists(StringLiteral source | DataFlow::localFlow(DataFlow: :exprNode(source),
~DataFlow: :exprNode (formatString)))
select call, "Argument to 'string.Format' isn't hard-coded."

Exercises

Exercise 1: Write a query that finds all hard-coded strings used to create a System.Uri, using local data flow.
(Answer)

4.3.3 Global data flow

Global data flow tracks data flow throughout the entire program, and is therefore more powerful than local data
flow. However, global data flow is less precise than local data flow, and the analysis typically requires significantly
more time and memory to perform.

Note

You can model data flow paths in CodeQL by creating path queries. To view data flow paths generated
by a path query in CodeQL for VS Code, you need to make sure that it has the correct metadata and
select clause. For more information, see Creating path queries.

Using global data flow

The global data flow library is used by extending the class DataFlow: : Configuration:

import csharp

class MyDataFlowConfiguration extends DataFlow::Configuration {
MyDataFlowConfiguration() { this = "..." }

override predicate isSource(DataFlow::Node source) {

override predicate isSink(DataFlow::Node sink) {

These predicates are defined in the configuration:
* isSource - defines where data may flow from.
* isSink - defines where data may flow to.
e isBarrier - optionally, restricts the data flow.
* isAdditionalFlowStep - optionally, adds additional flow steps.

The characteristic predicate (MyDataFlowConfiguration()) defines the name of the configuration, so "..."
must be replaced with a unique name.

The data flow analysis is performed using the predicate hasFlow(DataFlow: :Node source, DataFlow::Node

sink):

4.3. Analyzing data flow in C# 121

https://help.semmle.com/QL/learn-ql/writing-queries/path-queries.html

Learning CodeQL, Release 1.24

from MyDataFlowConfiguation dataflow, DataFlow::Node source, DataFlow::Node sink
where dataflow.hasFlow(source, sink)
select source, "Dataflow to $Q@.", sink, sink.toString()

Using global taint tracking

Global taint tracking is to global data flow what local taint tracking is to local data flow. That is, global taint
tracking extends global data flow with additional non-value-preserving steps. The global taint tracking library is
used by extending the class TaintTracking: :Configuration:

import csharp

class MyTaintTrackingConfiguration extends TaintTracking::Configuration {
MyTaintTrackingConfiguration() { this = "..." }

override predicate isSource(DataFlow::Node source) {

override predicate isSink(DataFlow::Node sink) {

These predicates are defined in the configuration:
* isSource - defines where taint may flow from.
* isSink - defines where taint may flow to.
* isSanitizer - optionally, restricts the taint flow.
* isAdditionalTaintStep - optionally, adds additional taint steps.

Similar to global data flow, the characteristic predicate (MyTaintTrackingConfiguration()) defines the unique
name of the configuration and the taint analysis is performed using the predicate hasFlow(DataFlow: :Node
source, DataFlow::Node sink).

Flow sources

The data flow library contains some predefined flow sources. The class PublicCallableParameterFlowSource
(defined in module semmle.code.csharp.dataflow.flowsources.PublicCallableParameter) represents
data flow from public parameters, which is useful for finding security problems in a public API.

The class RemoteSourceFlow (defined in module semmle. code.csharp.dataflow.flowsources.Remote) rep-
resents data flow from remote network inputs. This is useful for finding security problems in networked services.
Example

This query shows a data flow configuration that uses all public API parameters as data sources:

import csharp
import semmle.code.csharp.dataflow.flowsources.PublicCallableParameter

(continues on next page)

122 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

(continued from previous page)

class MyDataFlowConfiguration extends DataFlow::Configuration {
MyDataFlowConfiguration() {
this = "..."

override predicate isSource(DataFlow::Node source) {
source instanceof PublicCallableParameterFlowSource

Class hierarchy
* DataFlow::Configuration - base class for custom global data flow analysis.
* DataFlow: :Node - an element behaving as a data flow node.
- DataFlow: :ExprNode - an expression behaving as a data flow node.

— DataFlow: :ParameterNode - a parameter data flow node representing the value of a parameter at
function entry.

PublicCallableParameter - a parameter to a public method/callable in a public class.
- RemoteSourceFlow - data flow from network/remote input.
AspNetRemoteFlowSource - data flow from remote ASPNET user input.
- AspNetQueryStringRemoteFlowSource - data flow from System.Web.HttpRequest.

- AspNetUserInputRemoveFlowSource - data flow from System.Web.I0.WebControls.
TextBox.

WcfRemoteFlowSource - data flow from a WCF web service.
AspNetServiceRemoteFlowSource - data flow from an ASENET web service.

e TaintTracking::Configuration - base class for custom global taint tracking analysis.

Examples

This data flow configuration tracks data flow from environment variables to opening files:

import csharp

class EnvironmentToFileConfiguration extends DataFlow::Configuration {
EnvironmentToFileConfiguration() { this = "Environment opening files" }

override predicate isSource(DataFlow::Node source) {
exists(Method m |
m = source.asExpr().(MethodCall).getTarget() and
m.hasQualifiedName ("System.Environment.GetEnvironmentVariable")

)

(continues on next page)

4.3. Analyzing data flow in C# 123

Learning CodeQL, Release 1.24

(continued from previous page)

override predicate isSink(DataFlow::Node sink) {
exists(MethodCall mc |
mc.getTarget () .hasQualifiedName("System.I0.File.Open") and
sink.asExpr() = mc.getArgument (0)
)

from Expr environment, Expr fileOpen, EnvironmentToFileConfiguration config
where config.hasFlow(DataFlow: :exprNode(environment), DataFlow: :exprNode(fileOpen))
select fileOpen, "This 'File.Open' uses data from $0.",

environment, "call to 'GetEnvironmentVariable'"

Exercises
Exercise 2: Find all hard-coded strings passed to System.Uri, using global data flow. (Answer)

Exercise 3: Define a class that represents flow sources from System.Environment.GetEnvironmentVariable.
(Answer)

Exercise 4: Using the answers from 2 and 3, write a query to find all global data flow from System.Environment.
GetEnvironmentVariable to System.Uri. (Answer)

4.3.4 Extending library data flow

Library data flow defines how data flows through libraries where the source code is not available, such as the
.NET Framework, third-party libraries or proprietary libraries.

To define new library data flow, extend the class LibraryTypeDataFlow from the module semmle. code. csharp.
dataflow.LibraryTypeDataFlow. Override the predicate callableFlow to define how data flows through the
methods in the class. callableFlow has the signature

predicate callableFlow(CallableFlowSource source, CallableFlowSink sink, SourceDeclarationCallable,

—callable, boolean preservesValue)

* callable - the Callable (such as a method, constructor, property getter or setter) performing the data
flow.

* source - the data flow input.
* sink - the data flow output.

* preservesValue - whether the flow step preserves the value, for example if x is a string then x . ToString ()
preserves the value where as x.ToLower () does not.

Class hierarchy
e Callable - a callable (methods, accessors, constructors etc.)
— SourceDeclarationCallable - an unconstructed callable.

* CallableFlowSource - the input of data flow into the callable.

124 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

— CallableFlowSourceQualifier - the data flow comes from the object itself.
— CallableFlowSourceArg - the data flow comes from an argument to the call.

* CallableFlowSink - the output of data flow from the callable.

CallableFlowSinkQualifier - the output is to the object itself.

CallableFlowSinkReturn - the output is returned from the call.

CallableFlowSinkArg - the output is an argument.

CallableFlowSinkDelegateArg - the output flows through a delegate argument (for example,
LINQ).

Example

This example is adapted from LibraryTypeDataFlow.qll. It declares data flow through the class System.
Uri, including the constructor, the ToString method, and the properties Query, OriginalString, and
PathAndQuery.

import semmle.code.csharp.dataflow.LibraryTypeDataFlow
import semmle.code.csharp.frameworks.System

class SystemUriFlow extends LibraryTypeDataFlow, SystemUriClass {
override predicate callableFlow(CallableFlowSource source, CallableFlowSink sink,
—SourceDeclarationCallable c, boolean preservesValue) {
(
constructorFlow(source, c) and
sink instanceof CallableFlowSinkQualifier
or
methodFlow(c) and
source instanceof CallableFlowSourceQualifier and
sink instanceof CallableFlowSinkReturn
or
exists(Property p |
propertyFlow(p) and
source instanceof CallableFlowSourceQualifier and
sink instanceof CallableFlowSinkReturn and
c = p.getGetter()

)
and
preservesValue = false

}

private predicate constructorFlow(CallableFlowSourceArg source, Constructor c) {
¢ = getAMember()
and
c.getParameter(0) .getType() instanceof StringType
and
source.getArgumentIndex() = 0

}

private predicate methodFlow(Method m) {

(continues on next page)

4.3. Analyzing data flow in C# 125

Learning CodeQL, Release 1.24

(continued from previous page)

m.getDeclaringType() = getABaseTypex*()

and

m = getSystemObjectClass().getToStringMethod () .getAnOverriderx*()
}

private predicate propertyFlow(Property p) {
p = getPathAndQueryProperty ()
or
p = getQueryProperty()
or
p = getOriginalStringProperty ()

This defines a new class SystemUriFlow which extends LibraryTypeDataFlow to add another case. It ex-
tends SystemUriClass (the class representing System.Uri, defined in the module semmle.code.csharp.
frameworks.System) to access methods such as getQueryProperty.

The predicate callableFlow declares data flow through System.Uri. The first case (constructorFlow) de-
clares data flow from the first argument of the constructor to the object itself (CallableFlowSinkQualifier).

The second case declares data flow from the object (CallableFlowSourceQualifier) to the result of calling
ToString on the object (CallableFlowSinkReturn).

The third case declares data flow from the object (CallableFlowSourceQualifier) to the return
(CallableFlowSinkReturn) of the getters for the properties PathAndQuery, Query and OriginalString. Note
that the properties (getPathAndQueryProperty, getQueryProperty and getOriginalStringProperty) are
inherited from the class SystemUriClass.

In all three cases preservesValue = false, which means that these steps will only be included in taint tracking,
not in (normal) data flow.

Exercises

Exercise 5: In System.Uri, what other properties could expose data? How could they be added to
SystemUriFlow? (Answer)

Exercise 6: Implement the data flow for the class System.Exception. (Answer)

4.3.5 Answers

Exercise 1

import csharp

from Expr src, Call c

where DataFlow::localFlow(DataFlow: :exprNode(src), DataFlow: :exprNode(c.getArgument(0)))
and c.getTarget().(Constructor).getDeclaringType() .hasQualifiedName("System.Uri")
and src.hasValue()

select src, "This string constructs 'System.Uri' $0@.", c, "here"

126 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

Exercise 2

import csharp

class Configuration extends DataFlow::Configuration {
Configuration() { this="String to System.Uri" }

override predicate isSource(DataFlow::Node src) {
src.asExpr() .hasValue ()
}

override predicate isSink(DataFlow::Node sink) {
exists(Call ¢ | c.getTarget().(Constructor).getDeclaringType () .hasQualifiedName("System.Uri")
and sink.asExpr()=c.getArgument (0))

}

from DataFlow::Node src, DataFlow::Node sink, Configuration config
where config.hasFlow(src, sink)
select src, "This string constructs a 'System.Uri' $@.", sink, "here"

Exercise 3

class EnvironmentVariableFlowSource extends DataFlow::ExprNode {
EnvironmentVariableFlowSource() {
this.getExpr() . (MethodCall) .getTarget () .hasQualifiedName("System.Environment.
~GetEnvironmentVariable")

}

Exercise 4

import csharp

class EnvironmentVariableFlowSource extends DataFlow: :ExprNode {
EnvironmentVariableFlowSource() {
this.getExpr() . (MethodCall) .getTarget () .hasQualifiedName ("System.Environment.
—GetEnvironmentVariable")

}

class Configuration extends DataFlow::Configuration {
Configuration() { this="Environment to System.Uri" }

override predicate isSource(DataFlow::Node src) {
src.asExpr() instanceof EnvironmentVariableFlowSource

}

override predicate isSink(DataFlow::Node sink) {
exists(Call ¢ | c.getTarget().(Constructor).getDeclaringType() .hasQualifiedName("System.Uri")
and sink.asExpr()=c.getArgument(0))

(continues on next page)

4.3. Analyzing data flow in C# 127

Learning CodeQL, Release 1.24

(continued from previous page)

from DataFlow: :Node src, DataFlow::Node sink, Configuration config
where config.hasFlow(src, sink)

select src, "This environment variable constructs a 'System.Uri' $@.", sink, "here"

Exercise 5

All properties can flow data:

private predicate propertyFlow(Property p) {
p = getAMember ()
}

Exercise 6

This can be adapted from the SystemUriFlow class:

import semmle.code.csharp.dataflow.LibraryTypeDataFlow
import semmle.code.csharp.frameworks.System

class SystemExceptionFlow extends LibraryTypeDataFlow, SystemExceptionClass {
override predicate callableFlow(CallableFlowSource source, CallableFlowSink sink,;
—~SourceDeclarationCallable c, boolean preservesValue) {
(
constructorFlow(source, c) and
sink instanceof CallableFlowSinkQualifier
or
methodFlow(source, sink, c)
or
exists(Property p |
propertyFlow(p) and
source instanceof CallableFlowSourceQualifier and
sink instanceof CallableFlowSinkReturn and
c = p.getGetter()

)
and
preservesValue = false

}

private predicate constructorFlow(CallableFlowSourceArg source, Constructor c) {
¢ = getAMember ()
and
c.getParameter(0) .getType() instanceof StringType
and

source.getArgumentIndex() = 0

}

(continues on next page)

128 Chapter 4. CodeQL for C#

Learning CodeQL, Release 1.24

(continued from previous page)

private predicate methodFlow(CallableFlowSourceQualifier source, CallableFlowSinkReturn sink,
—SourceDeclarationMethod m) {
m.getDeclaringType() = getABaseTypex()
and
m = getSystemObjectClass().getToStringMethod() .getAnOverriderx* ()
}

private predicate propertyFlow(Property p) {
p = getAProperty() and p.hasName('"Message")
}
}

4.3.6 Further reading
* Exploring data flow with path queries
* CodeQL queries for C#
* Example queries for C#
¢ CodeQL library reference for C#
* QL language reference
¢ CodeQL tools
* Basic query for C# code: Learn to write and run a simple CodeQL query using LGTM.

* CodeQL library for C#: When youre analyzing a C# program, you can make use of the large collection of
classes in the CodeQL library for C#.

* Analyzing data flow in C#: You can use CodeQL to track the flow of data through a C# program to its use.

4.3. Analyzing data flow in C# 129

https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql/tree/master/csharp/ql/src
https://github.com/github/codeql/tree/master/csharp/ql/examples
https://help.semmle.com/qldoc/csharp/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

130 Chapter 4. CodeQL for C#

CHAPTER

FIVE

CODEQL FOR GO

Experiment and learn how to write effective and efficient queries for CodeQL databases generated from Go code-
bases.

5.1 Basic query for Go code

Learn to write and run a simple CodeQL query using LGTM.

5.1.1 About the query

The query were going to run searches the code for methods defined on value types that modify their receiver by
writing a field:

func (s MyStruct) valueMethod() { s.f = 1 } // method on value

This is problematic because the receiver argument is passed by value, not by reference. Consequently, val-
ueMethod is called with a copy of the receiver object, so any changes it makes to the receiver will be invisible to
the caller. To prevent this, the method should be defined on a pointer instead:

func (s *MyStruct) pointerMethod() { s.f = 1 } // method on pointer

For further information on using methods on values or pointers in Go, see the Go FAQ.

5.1.2 Running the query
1. In the main search box on LGTM.com, search for the project you want to query. For tips, see Searching.
2. Click the project in the search results.
3. Click Query this project.
This opens the query console. (For information about using this, see Using the query console.)
Note

Alternatively, you can go straight to the query console by clicking Query console (at the top of
any page), selecting Go from the Language drop-down list, then choosing one or more projects
to query from those displayed in the Project drop-down list.

4. Copy the following query into the text box in the query console:

131

https://golang.org/doc/faq#methods_on_values_or_pointers
https://lgtm.com/help/lgtm/searching
https://lgtm.com/help/lgtm/using-query-console

Learning CodeQL, Release 1.24

import go

from Method m, Variable recv, Write w, Field f
where
recv = m.getReceiver() and
w.writesField(recv.getARead(), f, _) and
not recv.getType() instanceof PointerType
select w, "This update to " + f + " has no effect, because " + recv + " is not a pointer."

LGTM checks whether your query compiles and, if all is well, the Run button changes to green to indicate
that you can go ahead and run the query.

5. Click Run.

The name of the project you are querying, and the ID of the most recently analyzed commit to the project,
are listed below the query box. To the right of this is an icon that indicates the progress of the query

operation:
Progress: 22%
| (s
Note

Your query is always run against the most recently analyzed commit to the selected project.

The query will take a few moments to return results. When the query completes, the results are displayed
below the project name. The query results are listed in two columns, corresponding to the two expressions
in the select clause of the query. The first column corresponds to w, which is the location in the source
code where the receiver recv is modified. The second column is the alert message.

Example query results
Note

An ellipsis () at the bottom of the table indicates that the entire list is not displayedclick it to
show more results.

6. If any matching code is found, click a link in the w column to view it in the code viewer.

The matching w is highlighted with a yellow background in the code viewer. If any code in the file also
matches a query from the standard query library for that language, you will see a red alert message at the
appropriate point within the code.

About the query structure

After the initial import statement, this simple query comprises three parts that serve similar purposes to the
FROM, WHERE, and SELECT parts of an SQL query.

132 Chapter 5. CodeQL for Go

https://lgtm.com/query/6221190009056970603/

Learning CodeQL, Release 1.24

Query part

Purpose

Details

import go

Imports the standard CodeQL li-
braries for Go.

Every query begins with one or
more import statements.

from Method m, Variable
recv, Write w, Field f

Defines the variables for the query.
Declarations are of the form:
<type> <variable name>

We declare:
e m as a variable for all meth-
ods

¢ arecv variable, which is the
receiver of m

¢ w as the location in the code
where the receiver is modi-
fied

e f as the field that is written
when m is called

where recv = m.
getReceiver() and w.
writesField(recv.
getARead(), £, _) and not
recv.getType() instanceof
PointerType

Defines a condition on the vari-
ables.

recv = m.getReceiver() states
that recv must be the receiver
variable of m.
w.writesField(recv.
getARead(), f, _) states that
w must be a location in the code
where field f of recv is modified.
We use a dont-care expression _
for the value that is written to
fthe actual value doesnt matter in
this query.

not recv.getType()
instanceof PointerType states
that m is not a pointer method.

select w,
n +f+ n

"This update to
has no effect,

because " + recv + " is not

a pointer.

Defines what to report for each
match.

select statements for queries that
are used to find instances of
poor coding practice are always
in the form:
element>, "<alert message>"

select <program

Reports w with a message that ex-
plains the potential problem.

5.1.3 Extend the query

Query writing is an inherently iterative process. You write a simple query and then, when you run it, you discover
examples that you had not previously considered, or opportunities for improvement.

Remove false positive results

Among the results generated by the first iteration of this query, you can find cases where a value method is called
but the receiver variable is returned. In such cases, the change to the receiver is not invisible to the caller, so a
pointer method is not required. These are false positive results and you can improve the query by adding an extra

condition to remove them.

5.1. Basic query for Go code

133

https://help.semmle.com/QL/ql-handbook/expressions.html#don-t-care-expressions

Learning CodeQL, Release 1.24

To exclude these values:

1. Extend the where clause to include the following extra condition:

not exists(ReturnStmt ret | ret.getExpr() = recv.getARead().asExpr())

The where clause is now:

where e.isPure() and
recv = m.getReceiver() and
w.writesField(recv.getARead(), £, _) and
not recv.getType() instanceof PointerType and
not exists(ReturnStmt ret | ret.getExpr() = recv.getARead().asExpr())

2. Click Run.

There are now fewer results because value methods that return their receiver variable are no longer re-
ported.

See this in the query console

5.1.4 Further reading
¢ CodeQL queries for Go

* Example queries for Go

CodeQL library reference for Go
* QL language reference

* CodeQL tools

5.2 CodeQL library for Go

When youre analyzing a Go program, you can make use of the large collection of classes in the CodeQL library
for Go.

5.2.1 Overview

CodeQL ships with an extensive library for analyzing Go code. The classes in this library present the data from a
CodeQL database in an object-oriented form and provide abstractions and predicates to help you with common
analysis tasks.

The library is implemented as a set of QL modules, that is, files with the extension .qll. The module go.qll
imports most other standard library modules, so you can include the complete library by beginning your query
with:

import go

Broadly speaking, the CodeQL library for Go provides two views of a Go code base: at the syntactic level, source
code is represented as an abstract syntax tree (AST), while at the data-flow level it is represented as a data-flow
graph (DFG). In between, there is also an intermediate representation of the program as a control-flow graph

134 Chapter 5. CodeQL for Go

https://lgtm.com/query/9110448975027954322/
https://github.com/github/codeql-go/tree/master/ql/src
https://github.com/github/codeql-go/tree/master/ql/examples
https://help.semmle.com/qldoc/go/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Data-flow_analysis
https://en.wikipedia.org/wiki/Data-flow_analysis

Learning CodeQL, Release 1.24

(CFG), though this representation is rarely useful on its own and mostly used to construct the higher-level DFG
representation.

The AST representation captures the syntactic structure of the program. You can use it to reason about syntactic
properties such as the nesting of statements within each other, but also about the types of expressions and which
variable a name refers to.

The DFG, on the other hand, provides an approximation of how data flows through variables and operations at
runtime. It is used, for example, by the security queries to model the way user-controlled input can propagate
through the program. Additionally, the DFG contains information about which function may be invoked by a
given call (taking virtual dispatch through interfaces into account), as well as control-flow information about the
order in which different operations may be executed at runtime.

As a rule of thumb, you normally want to use the AST only for superficial syntactic queries. Any analysis involving
deeper semantic properties of the program should be done on the DFG.

The rest of this tutorial briefly summarizes the most important classes and predicates provided by this library,
including references to the detailed API documentation where applicable. We start by giving an overview of the
AST representation, followed by an explanation of names and entities, which are used to represent name-binding
information, and of types and type information. Then we move on to control flow and the data-flow graph, and
finally the call graph and a few advanced topics.

5.2.2 Abstract syntax

The AST presents the program as a hierarchical structure of nodes, each of which corresponds to a syntactic
element of the program source text. For example, there is an AST node for each expression and each statement
in the program. These AST nodes are arranged into a parent-child relationship reflecting the nesting of syntactic
elements and the order in which inner elements appear in enclosing ones.

For example, this is the AST for the expression (x + y) * z:

5.2. CodeQL library for Go 135

https://help.semmle.com/qldoc/go/

Learning CodeQL, Release 1.24

x+y)*z

/' \

xX+y) y4

X+Yy

X y

It is composed of six AST nodes, representing x, y, x + y, (x + y), z and the entire expression (x + y) * z,
respectively. The AST nodes representing x and y are children of the AST node representing x + y, x being the
zeroth child and y being the first child, reflecting their order in the program text. Similarly, x + y is the only
child of (x + y), which is the zeroth child of (x + y) * z, whose first child is z.

All AST nodes belong to class AstNode, which defines generic tree traversal predicates:
* getChild(i): returns the ith child of this AST node.
* getAChild(): returns any child of this AST node.
* getParent (): returns the parent node of this AST node, if any.

These predicates should only be used to perform generic AST traversal. To access children of specific AST node
types, the specialized predicates introduced below should be used instead. In particular, queries should not rely

136 Chapter 5. CodeQL for Go

https://help.semmle.com/qldoc/go/semmle/go/AST.qll/type.AST\protect \T1\textdollar AstNode.html

Learning CodeQL, Release 1.24

on the numeric indices of child nodes relative to their parent nodes: these are considered an implementation
detail that may change between versions of the library.

The predicate toString () in class AstNode nodes gives a short description of the AST node, usually just indicating
what kind of node it is. The toString() predicate does not provide access to the source text corresponding to
an AST node. The source text is not stored in the dataset, and hence is not directly accessible to CodeQL queries.

The predicate getLocation() in class AstNode returns a Location entity describing the source location of the
program element represented by the AST node. You can use its member predicates getFile (), getStartLine(),
getStartColumn, getEndLine (), and getEndColumn() to obtain information about its file, start line and col-
umn, and end line and column.

The most important subclasses of AstNode are Stmt and Expr, which represent statements and expressions, respec-
tively. This section briefly discusses some of their more important subclasses and predicates. For a full reference
of all the subclasses of Stmt and Expr, see Abstract syntax tree classes for Go.

Statements
e ExprStmt: an expression statement; use getExpr () to access the expression itself

* Assignment: an assignment statement; use getLhs (i) to access the ith left-hand side and getRhs (i) to
access the ith right-hand side; if there is only a single left-hand side you can use getLhs() instead, and
similar for the right-hand side

— SimpleAssignStmt: an assignment statement that does not involve a compound operator
AssignStmt: a plain assignment statement of the form 1hs = rhs
DefineStmt: a short-hand variable declaration of the form 1hs := rhs

— CompoundAssignStmt: an assignment statement with a compound operator, such as 1hs += rhs

e IncStmt, DecStmt: an increment statement or a decrement statement, respectively; use getOperand () to
access the expression being incremented or decremented

* BlockStmt: a block of statements between curly braces; use getStmt (i) to access the ith statement in a
block

* IfStmt: an if statement; use getInit (), getCond(), getThen(), and getElse () to access the (optional)
init statement, the condition being checked, the then branch to evaluate if the condition is true, and the
(optional) else branch to evaluate otherwise, respectively

* LoopStmt: a loop; use getBody () to access its body

— ForStmt: a for statement; use getInit (), getCond (), and getPost () to access the init statement,
loop condition, and post statement, respectively, all of which are optional

- RangeStmt: a range statement; use getDomain () to access the iteration domain, and getKey () and
getValue () to access the expressions to which successive keys and values are assigned, if any

* GoStmt: a go statement; use getCall () to access the call expression that is evaluated in the new goroutine
* DeferStmt: a defer statement; use getCall() to access the call expression being deferred

* SendStmt: a send statement; use getChannel() and getValue() to access the channel and the value
being sent over the channel, respectively

* ReturnStmt: a return statement; use getExpr (i) to access the ith returned expression; if there is only
a single returned expression you can use getExpr () instead

5.2. CodeQL library for Go 137

https://help.semmle.com/qldoc/go/semmle/go/Locations.qll/type.Locations\protect \T1\textdollar Location.html
https://help.semmle.com/qldoc/go/semmle/go/AST.qll/type.AST\protect \T1\textdollar AstNode.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html

Learning CodeQL, Release 1.24

BranchStmt: a statement that interrupts structured control flow; use getLabel () to get the optional target
label

BreakStmt: a break statement

ContinueStmt: a continue statement

FallthroughStmt: a fallthrough statement at the end of a switch case
— GotoStmt: a goto statement

DeclStmt: a declaration statement, use getDecl () to access the declaration in this statement; note that
one rarely needs to deal with declaration statements directly, since reasoning about the entities they declare
is usually easier

SwitchStmt: a switch statement; use getInit () to access the (optional) init statement, and getCase (i)
to access the ith case or default clause

— ExpressionSwitchStmt: a switch statement examining the value of an expression
— TypeSwitchStmt: a switch statement examining the type of an expression

CaseClause: a case or default clause in a switch statement; use getExpr (i) to access the ith expres-
sion, and getStmt (i) to access the ith statement in the body of this clause

SelectStmt: a select statement; use getCommClause (i) to access the ith case or default clause

CommClause: a case or default clause in a select statement; use getComm() to access the send/receive
statement of this clause (not defined for default clauses), and getStmt (i) to access the ith statement in
the body of this clause

RecvStmt: a receive statement in a case clause of a select statement; use getLhs (i) to access the ith
left-hand side of this statement, and getExpr () to access the underlying receive expression

Expressions

Class Expression has a predicate isConst () that holds if the expression is a compile-time constant. For such
constant expressions, getNumericValue () and getStringValue () can be used to determine their numeric value
and string value, respectively. Note that these predicates are not defined for expressions whose value cannot be
determined at compile time. Also note that the result type of getNumericValue() is the QL type float. If an
expression has a numeric value that cannot be represented as a QL float, this predicate is also not defined. In
such cases, you can use getExactValue() to obtain a string representation of the value of the constant.

Ident: an identifier; use getName () to access its name

SelectorExpr: a selector of the form base.sel; use getBase() to access the part before the dot, and
getSelector () for the identifier after the dot

BasicLit: a literal of a basic type; subclasses IntLit, FloatLit, ImagLit, Runelit, and StringLit
represent various specific kinds of literals

FuncLit: a function literal; use getBody () to access the body of the function

CompositeLit: a composite literal; use getKey(i) and getValue(i) to access the ith key and the ith
value, respectively

ParenExpr: a parenthesized expression; use getExpr () to access the expression between the parentheses

IndexExpr: an index expression base[idx]; use getBase() and getIndex() to access base and idx,
respectively

138

Chapter 5. CodeQL for Go

Learning CodeQL, Release 1.24

* SliceExpr: a slice expression base[lo:hi:max]; use getBase(), getLow(), getHigh(), and getMax ()
to access base, lo, hi, and max, respectively; note that 1o, hi, and max can be omitted, in which case the
corresponding predicates are not defined

* ConversionExpr: a conversion expression T (e); use getTypeExpr () and getOperand() to access T and
e, respectively

* TypeAssertExpr: a type assertion e. (T); use getExpr () and getTypeExpr () to access e and T, respec-
tively

* CallExpr: a call expression callee(arg0, ..., argn); use getCalleeExpr() to access callee, and
getArg(i) to access the ith argument

e StarExpr: a star expression, which may be either a pointer-type expression or a pointer-dereference ex-
pression, depending on context; use getBase () to access the operand of the star

* TypeExpr: an expression that denotes a type
* OperatorExpr: an expression with a unary or binary operator; use getOperator () to access the operator

— UnaryExpr: an expression with a unary operator; use getAnOperand () to access the operand of the
operator

- BinaryExpr: an expression with a binary operator; use getLeftOperand() and
getRightOperand () to access the left and the right operand, respectively

ComparisonExpr: a binary expression that performs a comparison, including both equality
tests and relational comparisons

- EqualityTestExpr: an equality test, that is, either == or !=; the predicate
getPolarity() has result true for the former and false for the latter

- RelationalComparisonExpr: a relational comparison; use getLesserOperand() and
getGreaterOperand () to access the lesser and greater operand of the comparison, re-
spectively; isStrict () holds if this is a strict comparison using < or >, as opposed to <=
or >=

Names

While Ident and SelectorExpr are very useful classes, they are often too general: Ident covers all identifiers
in a program, including both identifiers appearing in a declaration as well as references, and does not distinguish
between names referring to packages, types, variables, constants, functions, or statement labels. Similarly, a
SelectorExpr might refer to a package, a type, a function, or a method.

Class Name and its subclasses provide a more fine-grained mapping of this space, organized along the two axes of
structure and namespace. In terms of structure, a name can be a SimpleName, meaning that it is a simple identifier
(and hence an Ident), or it can be a QualifiedName, meaning that it is a qualified identifier (and hence a
SelectorExpr). In terms of namespacing, a Name can be a PackageName, TypeName, ValueName, or LabelName.
A ValueName, in turn, can be either a ConstantName, a VariableName, or a FunctionName, depending on what
sort of entity the name refers to.

A related abstraction is provided by class ReferenceExpr: a reference expression is an expression that refers to
a variable, a constant, a function, a field, or an element of an array or a slice. Use predicates isLvalue() and
isRvalue () to determine whether a reference expression appears in a syntactic context where it is assigned to
or read from, respectively.

5.2. CodeQL library for Go 139

Learning CodeQL, Release 1.24

Finally, ValueExpr generalizes ReferenceExpr to include all other kinds of expressions that can be evaluated to
a value (as opposed to expressions that refer to a package, a type, or a statement label).

Functions

At the syntactic level, functions appear in two forms: in function declarations (represented by class FuncDecl)
and as function literals (represented by class FuncLit). Since it is often convenient to reason about functions of
either kind, these two classes share a common superclass FuncDef, which defines a few useful member predicates:

* getBody () provides access to the function body
* getName() gets the function name; it is undefined for function literals, which do not have a name
* getParameter (i) gets the ith parameter of the function

* getResultVar (i) gets the ith result variable of the function; if there is only one result, getResultVar ()
can be used to access it

* getACall() gets a data-flow node (see below) representing a call to this function

5.2.3 Entities and name binding

Not all elements of a code base can be represented as AST nodes. For example, functions defined in the standard
library or in a dependency do not have a source-level definition within the source code of the program itself, and
built-in functions like 1en do not have a definition at all. Hence functions cannot simplify be identified with their
definition, and similarly for variables, types, and so on.

To smooth over this difference and provide a unified view of functions no matter where they are defined, the Go
library introduces the concept of an entity. An entity is a named program element, that is, a package, a type, a
constant, a variable, a field, a function, or a label. All entities belong to class Entity, which defines a few useful
predicates:

* getName () gets the name of the entity

* hasQualifiedName (pkg, n) holds if this entity is declared in package pkg and has name n; this predicate
is only defined for types, functions, and package-level variables and constants (but not for methods or local
variables)

* getDeclaration() connects an entity to its declaring identifier, if any
* getAReference() gets a Name that refers to this entity
Conversely, class Name defines a predicate getTarget () that gets the entity to which the name refers.

Class Entity has several subclasses representing specific kinds of entities: PackageEntity for packages;
TypeEntity for types; ValueEntity for constants (Constant), variables (Variable), and functions (Function);
and Label for statement labels.

Class Variable, in turn, has a few subclasses representing specific kinds of variables: a LocalVariable
is a variable declared in a local scope, that is, not at package level; ReceiverVariable, Parameter and
ResultVariable describe receivers, parameters and results, respectively, and define a predicate getFunction()
to access the corresponding function. Finally, class Field represents struct fields, and provides a member predi-
cate hasQualifiedName (pkg, tp, f) thatholds if this field has name f and belongs to type tp in package pkg.
(Note that due to embedding the same field can belong to multiple types.)

Class Function has a subclass Method representing methods (including both interface methods and methods
defined on a named type). Similar to Field, Method provides a member predicate hasQualifiedName (pkg,

140 Chapter 5. CodeQL for Go

Learning CodeQL, Release 1.24

tp, m) that holds if this method has name m and belongs to type tp in package pkg. Predicate implements (m2)
holds if this method implements method m2, that is, it has the same name and signature as m2 and it belongs to
a type that implements the interface to which m2 belongs. For any function, getACall() provides access to call
sites that may call this function, possibly through virtual dispatch.

Finally, module Builtin provides a convenient way of looking up the entities corresponding to built-in functions
and types. For example, Builtin: :1en() is the entity representing the built-in function len, Builtin: :bool ()
is the bool type, and Builtin: :nil() is the value nil.

5.2.4 Type information

Types are represented by class Type and its subclasses, such as BoolType for the built-in type bool; NumericType
for the various numeric types including IntType, Uint8Type, Float64Type and others; StringType for the
type string; NamedType, ArrayType, SliceType, StructType, InterfaceType, PointerType, MapType,
ChanType for named types, arrays, slices, structs, interfaces, pointers, maps, and channels, respectively. Finally,
SignatureType represents function types.

Note that the type BoolType is distinct from the entity Builtin: :bool(): the latter views bool as a declared
entity, the former as a type. You can, however, map from types to their corresponding entity (if any) using the
predicate getEntity ().

Class Expr and class Entity both define a predicate getType () to determine the type of an expression or entity.
If the type of an expression or entity cannot be determined (for example because some dependency could not be
found during extraction), it will be associated with an invalid type of class InvalidType.

5.2.5 Control flow

Most CodeQL query writers will rarely use the control-flow representation of a program directly, but it is never-
theless useful to understand how it works.

Unlike the abstract syntax tree, which views the program as a hierarchy of AST nodes, the control-flow graph
views it as a collection of control-flow nodes, each representing a single operation performed at runtime. These
nodes are connected to each other by (directed) edges representing the order in which operations are performed.

For example, consider the following code snippet:

x :=0

if p != nil {
x =p.f

}

return x

In the AST, this is represented as an IfStmt and a ReturnStmt, with the former having an NeqExpr and a
BlockStmt as its children, and so on. This provides a very detailed picture of the syntactic structure of the code,
but it does not immediately help us reason about the order in which the various operations such as the comparison
and the assignment are performed.

In the CFG, there are nodes correspondingtox := 0,p != nil,x = p.f, and return x,aswell as a few others.
The edges between these nodes model the possible execution orders of these statements and expressions, and look
as follows (simplified somewhat for presentational purposes):

5.2. CodeQL library for Go 141

Learning CodeQL, Release 1.24

For example, the edge from p != nil tox = p.f models the case where the comparison evaluates to true and
the then branch is evaluated, while the edge from p != nil to return x models the case where the comparison
evaluates to false and the then branch is skipped.

Note, in particular, that a CFG node can have multiple outgoing edges (like from p != nil) as well as multiple
incoming edges (like into return x) to represent control-flow branching at runtime.

Also note that only AST nodes that perform some kind of operation on values have a corresponding CFG node.
This includes expressions (such as the comparison p != nil), assignment statements (such as x = p.f) and
return statements (such as return x), but not statements that serve a purely syntactic purpose (such as block
statements) and statements whose semantics is already reflected by the CFG edges (such as if statements).

It is important to point out that the control-flow graph provided by the CodeQL libraries for Go only models
local control flow, that is, flow within a single function. Flow from function calls to the function they invoke, for
example, is not represented by control-flow edges.

In CodeQL, control-flow nodes are represented by class ControlFlow: : Node, and the edges between nodes are
captured by the member predicates getASuccessor() and getAPredecessor () of ControlFlow: :Node. In
addition to control-flow nodes representing runtime operations, each function also has a synthetic entry node
and an exit node, representing the start and end of an execution of the function, respectively. These exist to
ensure that the control-flow graph corresponding to a function has a unique entry node and a unique exit node,
which is required for many standard control-flow analysis algorithms.

5.2.6 Data flow

At the data-flow level, the program is thought of as a collection of data-flow nodes. These nodes are connected to
each other by (directed) edges representing the way data flows through the program at runtime.

For example, there are data-flow nodes corresponding to expressions and other data-flow nodes corresponding
to variables (SSA variables, to be precise). Here is the data-flow graph corresponding to the code snippet shown
above, ignoring SSA conversion for simplicity:

142 Chapter 5. CodeQL for Go

https://en.wikipedia.org/wiki/Static_single_assignment_form

Learning CodeQL, Release 1.24

Note that unlike in the control-flow graph, the assignments x := 0 and x = p.f are not represented as nodes.
Instead, they are expressed as edges between the node representing the right-hand side of the assignment and the
node representing the variable on the left-hand side. For any subsequent uses of that variable, there is a data-flow
edge from the variable to that use, so by following the edges in the data-flow graph we can trace the flow of
values through variables at runtime.

It is important to point out that the data-flow graph provided by the CodeQL libraries for Go only models local
flow, that is, flow within a single function. Flow from arguments in a function call to the corresponding function
parameters, for example, is not represented by data-flow edges.

In CodeQL, data-flow nodes are represented by class DataFlow: : Node, and the edges between nodes are captured
by the predicate DataFlow: :localFlowStep. The predicate DataFlow::localFlow generalizes this from a
single flow step to zero or more flow steps.

Most expressions have a corresponding data-flow node; exceptions include type expressions, statement labels and
other expressions that do not have a value, as well as short-circuiting operators. To map from the AST node of
an expression to the corresponding DFG node, use DataFlow: : exprNode. Note that the AST node and the DFG
node are different entities and cannot be used interchangeably.

There is also a predicate asExpr () on DataFlow: :Node that allows you to recover the expression underlying a
DFG node. However, this predicate should be used with caution, since many data-flow nodes do not correspond
to an expression, and so this predicate will not be defined for them.

Similar to Expr, DataFlow: :Node has a member predicate getType () to determine the type of a node, as well
as predicates getNumericValue(), getStringValue(), and getExactValue() to retrieve the value of a node
if it is constant.

Important subclasses of DataFlow: : Node include:

* DataFlow::CallNode: a function call or method call; use getArgument (i) and getResult (i) to obtain
the data-flow nodes corresponding to the ith argument and the ith result of this call, respectively; if there
is only a single result, getResult () will return it

* DataFlow::ParameterNode: a parameter of a function; use asParameter () to access the corresponding
AST node

* DataFlow::BinaryOperationNode: an operation involving a binary operator; each BinaryExpr has a
corresponding BinaryOperationNode, but there are also binary operations that are not explicit at the AST
level, such as those arising from compound assignments and increment/decrement statements; at the AST
level, x + 1,x += 1, and x++ are represented by different kinds of AST nodes, while at the DFG level they
are all modeled as a binary operation node with operands x and 1

* DataFlow::UnaryOperationNode: analogous, but for unary operators

— DataFlow: :PointerDereferenceNode: a pointer dereference, either explicit in an expression of the
form *p, or implicit in a field or method reference through a pointer

— DataFlow: :AddressOperationNode: analogous, but for taking the address of an entity

— DataFlow: :RelationalComparisonNode, DataFlow: :EqualityTestNode: data-flow nodes corre-
sponding to RelationalComparisonExpr and EqualityTestExpr AST nodes

Finally, classes Read and Write represent, respectively, a read or a write of a variable, a field, or an element
of an array, a slice or a map. Use their member predicates readsVariable, writesVariable, readsField,
writesField, readsElement, and writesElement to determine what the read/write refers to.

5.2. CodeQL library for Go 143

Learning CodeQL, Release 1.24

5.2.7 Call graph

The call graph connects function (and method) calls to the functions they invoke. Call graph information is made
available by two member predicates on DataFlow::CallNode: getTarget () returns the declared target of a
call, while getACallee () returns all possible actual functions a call may invoke at runtime.

These two predicates differ in how they handle calls to interface methods: while getTarget () will return the
interface method itself, getACallee () will return all concrete methods that implement the interface method.

5.2.8 Global data flow and taint tracking

The predicates DataFlow: : localFlowStep and DataFlow: : localFlow are useful for reasoning about the flow
of values in a single function. However, more advanced use cases, particularly in security analysis, will invariably
require reasoning about global data flow, including flow into, out of, and across function calls, and through fields.

In CodeQL, such reasoning is expressed in terms of data-flow configurations. A data-flow configuration has three
ingredients: sources, sinks, and barriers (also called sanitizers), all of which are sets of data-flow nodes. Given
these three sets, CodeQL provides a general mechanism for finding paths from a source to a sink, possibly going
into and out of functions and fields, but never flowing through a barrier.

To define a data-flow configuration, you can define a subclass of DataFlow: :Configuration, overriding the
member predicates isSource, isSink, and isBarrier to define the sets of sources, sinks, and barriers.

Going beyond pure data flow, many security analyses need to perform more general taint tracking, which also
considers flow through value-transforming operations such as string operations. To track taint, you can define a
subclass of TaintTracking: : Configuration, which works similar to data-flow configurations.

A detailed exposition of global data flow and taint tracking is out of scope for this brief introduction. For a general
overview of data flow and taint tracking, see About data flow analysis.

5.2.9 Advanced libraries

Finally, we briefly describe a few concepts and libraries that are useful for advanced query writers.

Basic blocks and dominance

Many important control-flow analyses organize control-flow nodes into basic blocks, which are maximal straight-
line sequences of control-flow nodes without any branching. In the CodeQL libraries, basic blocks are rep-
resented by class BasicBlock. Each control-flow node belongs to a basic block. You can use the predicate
getBasicBlock() in class ControlFlow: :Node and the predicate getNode (i) in BasicBlock to move from
one to the other.

Dominance is a standard concept in control-flow analysis: a basic block dom is said to dominate a basic block bb
if any path through the control-flow graph from the entry node to the first node of bb must pass through dom. In
other words, whenever program execution reaches the beginning of bb, it must have come through dom. Each
basic block is moreover considered to dominate itself.

Dually, a basic block postdom is said to post-dominate a basic block bb if any path through the control-flow graph
from the last node of bb to the exit node must pass through postdom. In other words, after program execution
leaves bb, it must eventually reach postdom.

These two concepts are captured by two member predicates dominates and postDominates of class BasicBlock.

144 Chapter 5. CodeQL for Go

https://help.semmle.com/QL/learn-ql/intro-to-data-flow.html
https://en.wikipedia.org/wiki/Basic_block

Learning CodeQL, Release 1.24

Condition guard nodes

A condition guard node is a synthetic control-flow node that records the fact that at some point in the control-flow
graph the truth value of a condition is known. For example, consider again the code snippet we saw above:

x :=0

if p !'= nil {
x =p.f

}

return x

At the beginning of the then branch p is known not be nil. This knowledge is encoded in the control-flow graph
by a condition guard node preceding the assignment to x, recording the fact that p != nil is true at this point:

p !=nil is true @

p != nil is false

A typical use of this information would be in an analysis that looks for nil dereferences: such an analysis would
be able to conclude that the field read p.f is safe because it is immediately preceded by a condition guard node
guaranteeing that p is not nil.

In CodeQL, condition guard nodes are represented by class ControlFlow: : ConditionGuardNode which offers
a variety of member predicates to reason about which conditions a guard node guarantees.

Static single-assignment form

Static single-assignment form (SSA form for short) is a program representation in which the original program
variables are mapped onto more fine-grained SSA variables. Each SSA variable has exactly one definition, so
program variables with multiple assignments correspond to multiple SSA variables.

Most of the time query authors do not have to deal with SSA form directly. The data-flow graph uses it under the
hood, and so most of the benefits derived from SSA can be gained by simply using the data-flow graph.

For example, the data-flow graph for our running example actually looks more like this:

Note that the program variable x has been mapped onto three distinct SSA variables x1, x2, and x3. In this
case there is not much benefit to such a representation, but in general SSA form has well-known advantages for
data-flow analysis for which we refer to the literature.

5.2. CodeQL library for Go 145

https://en.wikipedia.org/wiki/Static_single_assignment_form

Learning CodeQL, Release 1.24

If you do need to work with raw SSA variables, they are represented by the class SsaVariable. Class
SsaDefinition represents definitions of SSA variables, which have a one-to-one correspondence with
SsaVariables. Member predicates getDefinition() and getVariable() exist to map from one to the other.
You can use member predicate getAUse() of SsaVariable to look for uses of an SSA variable. To access the
program variable underlying an SSA variable, use member predicate getSourceVariable().

Global value numbering

Global value numbering is a technique for determining when two computations in a program are guaranteed to
yield the same result. This is done by associating with each data-flow node an abstract representation of its value
(conventionally called a value number, even though in practice it is not usually a number) such that identical
computations are represented by identical value numbers.

Since this is an undecidable problem, global value numbering is conservative in the sense that if two data-flow
nodes have the same value number they are guaranteed to have the same value at runtime, but not conversely.
(That is, there may be data-flow nodes that do, in fact, always evaluate to the same value, but their value numbers
are different.)

In the CodeQL libraries for Go, you can use the globalValueNumber (nd) predicate to compute the global value
number for a data-flow node nd. Value numbers are represented as an opaque QL type GVN that provides very
little information. Usually, all you need to do with global value numbers is to compare them to each other to
determine whether two data-flow nodes have the same value.

5.2.10 Further reading
* CodeQL queries for Go
* Example queries for Go
¢ CodeQL library reference for Go
* QL language reference

¢ CodeQL tools

5.3 Abstract syntax tree classes for working with Go programs

CodeQL has a large selection of classes for representing the abstract syntax tree of Go programs.

The abstract syntax tree (AST) represents the syntactic structure of a program. Nodes on the AST represent
elements such as statements and expressions.

5.3.1 Statement classes

This table lists all subclasses of Stmt.

Statement syntax CodeQL class Superclasses Remar
; EmptyStmt

Expr ExprStmt

{Stmt ...} BlockStmt

146 Chapter 5. CodeQL for Go

https://en.wikipedia.org/wiki/Value_numbering
https://github.com/github/codeql-go/tree/master/ql/src
https://github.com/github/codeql-go/tree/master/ql/examples
https://help.semmle.com/qldoc/go/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar EmptyStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ExprStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html

Learning CodeQL, Release 1.24

Table 1 — continued from previous page

5.3. Abstract syntax tree classes for working with Go programs

147

Statement syntax CodeQL class Superclasses Remar

if Expr BlockStmt IfStmt

if Expr BlockStmt else Stmt

if Stmt; Expr BlockStmt

for Expr BlockStmt ForStmt LoopStmt

for Stmt; Expr; Stmt BlockStmt

for Expr ... = range Expr BlockStmt RangeStmt LoopStmt

switch Expr { CaseClause ... } ExpressionSwitchStmt | SwitchStmt

switch Stmt; Expr { CaseClause ... }

switch Expr. (type) { CaseClause ... } TypeSwitchStmt SwitchStmt

switch SimpleAssignStmt. (type) { CaseClause ... }

switch Stmt; Expr. (type) { CaseClause ... }

select { CommClause ... } SelectStmt

return ReturnStmt

return Expr ...

break BreakStmt BranchStmt

break LabelName

continue ContinueStmt BranchStmt

continue LabelName

goto LabelName GotoStmt BranchStmt

fallthrough FallthroughStmt BranchStmt can on

LabelName: Stmt LabeledStmt

var VariableName TypeName DeclStmt

const VariableName = Expr

type TypeName TypeExpr

type TypeName = TypeExpr

Expr ... =Expr ... AssignStmt SimpleAssignStmt, Assignment

VariableName ... :=Expr ... DefineStmt SimpleAssignStmt, Assignment

Expr += Expr AddAssignStmt CompoundAssignStmt, Assignment

Expr —-= Expr SubAssignStmt CompoundAssignStmt, Assignment

Expr *= Expr MulAssignStmt CompoundAssignStmt, Assignment

Expr /= Expr QuoAssignStmt CompoundAssignStmt, Assignment

Expr %= Expr RemAssignStmt CompoundAssignStmt, Assignment

Expr *= Expr MulAssignStmt CompoundAssignStmt, Assignment

Expr &= Expr AndAssignStmt CompoundAssignStmt, Assignment

Expr |= Expr OrAssignStmt CompoundAssignStmt, Assignment

Expr "= Expr XorAssignStmt CompoundAssignStmt, Assignment

Expr <<= Expr ShlAssignStmt CompoundAssignStmt, Assignment

Expr >>= Expr ShrAssignStmt CompoundAssignStmt, Assignment

Expr &~= Expr AndNotAssignStmt CompoundAssignStmt, Assignment

Expr ++ IncStmt IncDecStmt

Expr —- DecStmt IncDecStmt

go CallExpr GoStmt

defer CallExpr DeferStmt

Expr <- Expr SendStmt

case Expr ...: Stmt ... CaseClause can on
a Swit

https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar IfStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ForStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar RangeStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CaseClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ExpressionSwitchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CaseClause.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CaseClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar TypeSwitchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SimpleAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CaseClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CaseClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CommClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SelectStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ReturnStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BreakStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BranchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LabelName.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ContinueStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BranchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LabelName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LabelName.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar GotoStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BranchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar FallthroughStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BranchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CaseClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ExpressionSwitchStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LabelName.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar LabeledStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar VariableName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar VariableName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar AssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SimpleAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar VariableName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar DefineStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SimpleAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar AddAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SubAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar MulAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar QuoAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar RemAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar MulAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar AndAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar OrAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar XorAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ShlAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar ShrAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar AndNotAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CompoundAssignStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar IncStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar IncDecStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar DecStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar IncDecStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CallExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar GoStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CallExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar DeferStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SendStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CaseClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html

Learning CodeQL, Release 1.24

Table 1 — continued from previous page

Statement syntax CodeQL class Superclasses Remar
case TypeExpr ...: Stmt ...

default: Stmt ...

case SendStmt: Stmt ... CommClause can on
case RecvStmt: Stmt . .. a Sele
default: Stmt ...

Expr ... = RecvExpr RecvStmt can on
VariableName ... := RecvExpr a Com
(anything unparseable) BadStmt

5.3.2 Expression classes

There are many expression classes, so we present them by category. All classes in this section are subclasses of

Expr.

Literals

Expression syntax example CodeQL class | Superclass
23 IntLit BasicLit
4.2 FloatLit BasicLit
4.2 + 2.71 ImaglLit BasicLit
'a' CharLit BasicLit
"Hello" StringLit BasicLit
func(x, y int) int { return x + y } | FuncLit FuncDef
map [stringlint{"A": 1, "B": 2} MapLit CompositeLit
Point3D{0.5, -0.5, 0.5} StructLit CompositeLit
Unary expressions
All classes in this subsection are subclasses of UnaryExpr.
Expression syntax | CodeQL class Superclasses
+Expr PlusExpr ArithmeticUnaryExpr
-Expr MinusExpr ArithmeticUnaryExpr
'Expr NotExpr LogicalUnaryExpr
~“Expr ComplementExpr | BitwiseUnaryExpr
&Expr AddressExpr
<-Expr RecvExpr

Binary expressions

All classes in this subsection are subclasses of BinaryExpr.

148

Chapter 5. CodeQL for Go

https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SendStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CommClause.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar SelectStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar RecvStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RecvExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar RecvStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar CommClause.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar VariableName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RecvExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Stmt.qll/type.Stmt\protect \T1\textdollar BadStmt.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar IntLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BasicLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar FloatLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BasicLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ImagLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BasicLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CharLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BasicLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar StringLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BasicLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar FuncLit.html
https://help.semmle.com/qldoc/go/semmle/go/Decls.qll/type.Decls\protect \T1\textdollar FuncDef.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar MapLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CompositeLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar StructLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CompositeLit.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar UnaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar PlusExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArithmeticUnaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar MinusExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArithmeticUnaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar NotExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LogicalUnaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ComplementExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BitwiseUnaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar AddressExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RecvExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BinaryExpr.html

Learning CodeQL, Release 1.24

Expression syntax | CodeQL class | Superclasses

Expr * Expr MulExpr ArithmeticBinaryExpr
Expr / Expr QuoExpr ArithmeticBinaryExpr
Expr % Expr RemExpr ArithmeticBinaryExpr
Expr + Expr AddExpr ArithmeticBinaryExpr
Expr - Expr SubExpr ArithmeticBinaryExpr
Expr << Expr ShlExpr ShiftExpr

Expr >> Expr ShrExpr ShiftExpr

Expr && Expr LandExpr LogicalBinaryExpr

Expr | | Expr LorExpr LogicalBinaryExpr

Expr < Expr LssExpr RelationalComparisonExpr
Expr > Expr GtrExpr RelationalComparisonExpr
Expr <= Expr LeqExpr RelationalComparisonExpr
Expr >= Expr GegExpr RelationalComparisonExpr
Expr == Expr EqlExpr EqualityTestExpr

Expr !'= Expr NeqExpr EqualityTestExpr

Expr & Expr AndExpr BitwiseBinaryExpr

Expr | Expr OrExpr BitwiseBinaryExpr

Expr ~ Expr XorExpr BitwiseBinaryExpr

Expr &~ Expr AndNotExpr BitwiseBinaryExpr

Type expressions

These classes represent different expressions for types. They do not have a common superclass.

Expression syntax CodeQL class Superclasses
[Expr] TypeExpr ArrayTypeExpr

struct { ... } StructTypeExpr

func FunctionName(...) (...) | FuncTypeExpr

interface { ... } InterfaceTypeExpr

map [TypeExpr] TypeExpr MapTypeExpr

chan<- TypeExpr SendChanTypeExpr ChanTypeExpr
<-chan TypeExpr RecvChanTypeExpr ChanTypeExpr
chan TypeExpr SendRecvChanTypeExpr | ChanTypeExpr

Name expressions
All classes in this subsection are subclasses of Name.

The following classes relate to the structure of the name.

The following classes relate to what sort of entity the name refers to.

¢ PackageName

Expression syntax | CodeQL class

Superclasses

Ident

SimpleName

Ident

Ident.Ident

QualifiedName

SelectorExpr

5.3. Abstract syntax tree classes for working with Go programs

149

https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar MulExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArithmeticBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar QuoExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArithmeticBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RemExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArithmeticBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar AddExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArithmeticBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar SubExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArithmeticBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ShlExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ShiftExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ShrExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ShiftExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LandExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LogicalBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LorExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LogicalBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LssExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RelationalComparisonExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar GtrExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RelationalComparisonExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LeqExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RelationalComparisonExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar GeqExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RelationalComparisonExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar EqlExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar EqualityTestExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar NeqExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar EqualityTestExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar AndExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BitwiseBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar OrExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BitwiseBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar XorExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BitwiseBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar AndNotExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BitwiseBinaryExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ArrayTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar StructTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar FunctionName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar FuncTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar InterfaceTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar MapTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar SendChanTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ChanTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar RecvChanTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ChanTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar SendRecvChanTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ChanTypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Name.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ident.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar SimpleName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ident.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ident.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ident.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar QualifiedName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar SelectorExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar PackageName.html

Learning CodeQL, Release 1.24

¢ TypeName
¢ LabelName

¢ ValueName

— ConstantName

— VariableName

— FunctionName

Miscellaneous

Expression syntax

CodeQL class

Superclasses

Remarks

foo Ident
B BlankIdent
e Ellipsis
(Expr) ParenExpr
Ident.Ident SelectorExpr
Expr [Expr] IndexExpr
Expr [Expr: Expr : Exp1] SliceExpr
Expr. (TypeExpr) TypeAssert-

Expr
*Expr StarExpr can be a ValueExpr or TypeExpr depending on

context

Expr: Expr KeyValueExpr
TypeExpr (Expr) Conversion- CallOrConversion-

Expr Expr
Expr(...) CallExpr CallOrConversion-

Expr

(anything un- | BadExpr
parseable)

The following classes organize expressions by the kind of entity they refer to.

CodeQL | Explanation

class

Type- an expression that denotes a type

Expr

Refer- an expression that refers to a variable, a constant, a function, a field, or an element of an array or
ence- a slice

Expr

Value- an expression that can be evaluated to a value (as opposed to expressions that refer to a package,
Expr a type, or a statement label). This generalizes ReferenceExpr

5.3.3 Further reading

* CodeQL queries for Go

* Example queries for Go

150

Chapter 5. CodeQL for Go

https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar LabelName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ValueName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ConstantName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar VariableName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar FunctionName.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ident.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BlankIdent.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ellipsis.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ParenExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ident.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Ident.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar SelectorExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar IndexExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar SliceExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeAssertExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeAssertExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar StarExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ValueExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar KeyValueExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ConversionExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ConversionExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CallOrConversionExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CallOrConversionExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CallExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CallOrConversionExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar CallOrConversionExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BadExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ReferenceExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ReferenceExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ReferenceExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BadExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar BadExpr.html
https://help.semmle.com/qldoc/go/semmle/go/Expr.qll/type.Expr\protect \T1\textdollar ReferenceExpr.html
https://github.com/github/codeql-go/tree/master/ql/src
https://github.com/github/codeql-go/tree/master/ql/examples

Learning CodeQL, Release 1.24

* CodeQL library reference for Go
* QL language reference

* CodeQL tools

5.4 Modeling data flow in Go libraries

When analyzing a Go program, CodeQL does not examine the source code for external packages. To track the
flow of untrusted data through a library, you can create a model of the library.

You can find existing models in the q1/src/semmle/go/frameworks/ folder of the CodeQL for Go repository.
To add a new model, you should make a new file in that folder, named after the library.

5.4.1 Sources

To mark a source of data that is controlled by an untrusted user, we create a class extending
UntrustedFlowSource: :Range. Inheritance and the characteristic predicate of the class should be used to spec-
ify exactly the dataflow node that introduces the data. Here is a short example from Mux.qll.

class RequestVars extends DataFlow::UntrustedFlowSource: :Range, DataFlow::CallNode {
RequestVars() { this.getTarget() .hasQualifiedName("github.com/gorilla/mux", "Vars") }
}

This has the effect that all calls to the function Vars from the package mux are treated as sources of untrusted
data.

5.4.2 Flow propagation

By default, we assume that all functions in libraries do not have any data flow. To indicate that a particular function
does have data flow, create a class extending TaintTracking: :FunctionModel (or DataFlow: : FunctionModel
if the untrusted user data is passed on without being modified).

Inheritance and the characteristic predicate of the class should specify the function. The class should also
have a member predicate with the signature override predicate hasTaintFlow(FunctionInput inp,
FunctionOutput outp) (or override predicate hasDataFlow(FunctionInput inp, FunctionOutput
outp) if extending DataFlow: :FunctionModel). The body should constrain inp and outp.

FunctionInput is an abstract representation of the inputs to a function. The options are:
¢ the receiver (inp.isReceiver())
¢ one of the parameters (inp.isParameter(i))
* one of the results (inp.isResult (i), or inp.isResult if there is only one result)

Note that it may seem strange that the result of a function could be considered as a function input, but it is needed
in some cases. For instance, the function bufio.NewWriter returns a writer bw that buffers write operations to
an underlying writer w. If tainted data is written to bw, then it makes sense to propagate that taint back to the
underlying writer w, which can be modeled by saying that bufio.NewWriter propagates taint from its result to
its first argument.

Similarly, FunctionOutput is an abstract representation of the outputs to a function. The options are:

¢ the receiver (outp.isReceiver())

5.4. Modeling data flow in Go libraries 151

https://help.semmle.com/qldoc/go/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://github.com/github/codeql-go/tree/main/ql/src/semmle/go/frameworks
http://www.gorillatoolkit.org/pkg/mux#Vars

Learning CodeQL, Release 1.24

* one of the parameters (outp.isParameter(i))
¢ one of the results (outp.isResult (i), or outp.isResult if there is only one result)

Here is an example from Gin.qll, which has been slightly simplified.

private class ParamsGet extends TaintTracking::FunctionModel, Method {
ParamsGet() { this.hasQualifiedName("github.com/gin-gonic/gin", "Params", "Get") }

override predicate hasTaintFlow(FunctionInput inp, FunctionOutput outp) {
inp.isReceiver() and outp.isResult(0)

}

This has the effect that calls to the Get method with receiver type Params from the gin-gonic/gin package
allow taint to flow from the receiver to the first result. In other words, if p has type Params and taint can flow to
it, then after the linex := p.Get("foo") taint can also flow to x.

5.4.3 Sanitizers

It is not necessary to indicate that library functions are sanitizers. Their bodies are not analyzed, so it is assumed
that data does not flow through them.

5.4.4 Sinks

Data-flow sinks are specified by queries rather than by library models. However, you can use library models
to indicate when functions belong to special categories. Queries can then use these categories when specifying
sinks. Classes representing these special categories are contained in q1/src/semmle/go/Concepts.qll in the
CodeQL for Go repository. Concepts.qll includes classes for logger mechanisms, HTTP response writers, HTTP
redirects, and marshaling and unmarshaling functions.

Here is a short example from Stdlib.qll, which has been slightly simplified.

private class PrintfCall extends LoggerCall::Range, DataFlow::CallNode {
PrintfCall() { this.getTarget().hasQualifiedName("fmt", ["Print", "Printf", "Println"]) }

override DataFlow::Node getAMessageComponent() { result = this.getAnArgument() }
}

This has the effect that any call to Print, Printf, or Println in the package fmt is recognized as a logger call.
Any query that uses logger calls as a sink will then identify when tainted data has been passed as an argument to
Print, Printf, or Println.

e Basic query for Go code: Learn to write and run a simple CodeQL query using LGTM.

* CodeQL library for Go: When youre analyzing a Go program, you can make use of the large collection of
classes in the CodeQL library for Go.

* Abstract syntax tree classes for working with Go programs: CodeQL has a large selection of classes for repre-
senting the abstract syntax tree of Go programs.

* Modeling data flow in Go libraries: When analyzing a Go program, CodeQL does not examine the source
code for external packages. To track the flow of untrusted data through a library, you can create a model
of the library.

152 Chapter 5. CodeQL for Go

https://github.com/github/codeql-go/blob/main/ql/src/semmle/go/Concepts.qll

CHAPTER

SIX

CODEQL FOR JAVA

Experiment and learn how to write effective and efficient queries for CodeQL databases generated from Java
codebases.

6.1 Basic query for Java code

Learn to write and run a simple CodeQL query using LGTM.

6.1.1 About the query

The query were going to run performs a basic search of the code for if statements that are redundant, in the
sense that they have an empty then branch. For example, code such as:

if (error) { }

6.1.2 Running the query
1. In the main search box on LGTM.com, search for the project you want to query. For tips, see Searching.
2. Click the project in the search results.
3. Click Query this project.
This opens the query console. (For information about using this, see Using the query console.)
Note

Alternatively, you can go straight to the query console by clicking Query console (at the top
of any page), selecting Java from the Language drop-down list, then choosing one or more
projects to query from those displayed in the Project drop-down list.

4. Copy the following query into the text box in the query console:

import java

from IfStmt ifstmt, Block block

where ifstmt.getThen() = block and
block.getNumStmt () = O

select ifstmt, "This 'if' statement is redundant."

153

https://lgtm.com/help/lgtm/searching
https://lgtm.com/help/lgtm/using-query-console

Learning CodeQL, Release 1.24

LGTM checks whether your query compiles and, if all is well, the Run button changes to green to indicate
that you can go ahead and run the query.

. Click Run.

The name of the project you are querying, and the ID of the most recently analyzed commit to the project,
are listed below the query box. To the right of this is an icon that indicates the progress of the query

operation:
Progress: 22%
S

Note
Your query is always run against the most recently analyzed commit to the selected project.

The query will take a few moments to return results. When the query completes, the results are displayed
below the project name. The query results are listed in two columns, corresponding to the two expressions
in the select clause of the query. The first column corresponds to the expression ifstmt and is linked to
the location in the source code of the project where ifstmt occurs. The second column is the alert message.

Example query results

Note

An ellipsis () at the bottom of the table indicates that the entire list is not displayedclick it to
show more results.

If any matching code is found, click a link in the ifstmt column to view the if statement in the code viewer.

The matching if statement is highlighted with a yellow background in the code viewer. If any code in the
file also matches a query from the standard query library for that language, you will see a red alert message
at the appropriate point within the code.

About the query structure

After the initial import statement, this simple query comprises three parts that serve similar purposes to the
FROM, WHERE, and SELECT parts of an SQL query.

154

Chapter 6. CodeQL for Java

https://lgtm.com/query/3235645104630320782/

Learning CodeQL, Release 1.24

Query part

Purpose

Details

import java

Imports the standard CodeQL li-
braries for Java.

Every query begins with one or
more import statements.

from IfStmt ifstmt, Block Defines the variables for the query. | We use:
block Declarations are of the form: e an IfStmt variable for if
<type> <variable name> statements

¢ aBlock variable for the then
block

Defines a condition on the vari-
ables.

ifstmt.getThen() = block re-
lates the two variables. The block
must be the then branch of the if
statement.

block.getNumStmt () = O states
that the block must be empty (that
is, it contains no statements).

where ifstmt.getThen()
= block and block.
getNumStmt () = 0

Reports the resulting if statement
with a string that explains the
problem.

select ifstmt, "This 'if'
statement is redundant."

Defines what to report for each
match.

select statements for queries that
are used to find instances of
poor coding practice are always
in the form: select <program
element>, "<alert message>"

6.1.3 Extend the query

Query writing is an inherently iterative process. You write a simple query and then, when you run it, you discover
examples that you had not previously considered, or opportunities for improvement.

Remove false positive results

Browsing the results of our basic query shows that it could be improved. Among the results you are likely to find
examples of if statements with an else branch, where an empty then branch does serve a purpose. For example:

if (...) {

} else if ("-verbose".equals(option)) {
// nothing to do - handled earlier

} else {
error ("unrecognized option");

}

In this case, identifying the if statement with the empty then branch as redundant is a false positive. One solution
to this is to modify the query to ignore empty then branches if the if statement has an else branch.

To exclude if statements that have an else branch:

1. Extend the where clause to include the following extra condition:

6.1. Basic query for Java code 155

Learning CodeQL, Release 1.24

and not exists(ifstmt.getElse())

The where clause is now:

where ifstmt.getThen() = block and
block.getNumStmt () = 0 and
not exists(ifstmt.getElse())

2. Click Run.
There are now fewer results because if statements with an else branch are no longer included.

See this in the query console

6.1.4 Further reading
* CodeQL queries for Java

* Example queries for Java

CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

6.2 CodeQL library for Java

When youre analyzing a Java program, you can make use of the large collection of classes in the CodeQL library
for Java.

6.2.1 About the CodeQL library for Java

There is an extensive library for analyzing CodeQL databases extracted from Java projects. The classes in this
library present the data from a database in an object-oriented form and provide abstractions and predicates to
help you with common analysis tasks.

The library is implemented as a set of QL modules, that is, files with the extension .ql1l. The module java.qll
imports all the core Java library modules, so you can include the complete library by beginning your query with:

import java

The rest of this article briefly summarizes the most important classes and predicates provided by this library.
Note

The example queries in this article illustrate the types of results returned by different library classes.
The results themselves are not interesting but can be used as the basis for developing a more complex
query. The other articles in this section of the help show how you can take a simple query and fine-tune
it to find precisely the results youre interested in.

156 Chapter 6. CodeQL for Java

https://lgtm.com/query/6382189874776576029/
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

6.2.2 Summary of the library classes
The most important classes in the standard Java library can be grouped into five main categories:
1. Classes for representing program elements (such as classes and methods)
2. Classes for representing AST nodes (such as statements and expressions)
3. Classes for representing metadata (such as annotations and comments)
4. Classes for computing metrics (such as cyclomatic complexity and coupling)
5. Classes for navigating the programs call graph

We will discuss each of these in turn, briefly describing the most important classes for each category.

6.2.3 Program elements

These classes represent named program elements: packages (Package), compilation units (CompilationUnit),
types (Type), methods (Method), constructors (Constructor), and variables (Variable).

Their common superclass is Element, which provides general member predicates for determining the name of a
program element and checking whether two elements are nested inside each other.

Its often convenient to refer to an element that might either be a method or a constructor; the class Callable,
which is a common superclass of Method and Constructor, can be used for this purpose.

Types
Class Type has a number of subclasses for representing different kinds of types:

e PrimitiveType represents a primitive type, that is, one of boolean, byte, char, double, float, int,
long, short; QL also classifies void and <nulltype> (the type of the null literal) as primitive types.

* RefType represents a reference (that is, non-primitive) type; it in turn has several subclasses:

Class represents a Java class.

Interface represents a Java interface.

EnumType represents a Java enum type.

Array represents a Java array type.

For example, the following query finds all variables of type int in the program:

import java

from Variable v, PrimitiveType pt

where pt = v.getType() and
pt.hasName("int")

select v

See this in the query console on LGTM.com. Youre likely to get many results when you run this query because
most projects contain many variables of type int.

Reference types are also categorized according to their declaration scope:

* TopLevelType represents a reference type declared at the top-level of a compilation unit.

6.2. CodeQL library for Java 157

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://lgtm.com/query/860076406167044435/

Learning CodeQL, Release 1.24

* NestedType is a type declared inside another type.

For instance, this query finds all top-level types whose name is not the same as that of their compilation unit:

import java

from TopLevelType tl
where tl.getName() != tl.getCompilationUnit() .getName()
select tl

See this in the query console on LGTM.com. This pattern is seen in many projects. When we ran it on the
LGTM.com demo projects, most of the projects had at least one instance of this problem in the source code. There
were many more instances in the files referenced by the source code.

Several more specialized classes are available as well:
* TopLevelClass represents a class declared at the top-level of a compilation unit.
* NestedClass represents a class declared inside another type, such as:
— A LocalClass, which is a class declared inside a method or constructor.
- An AnonymousClass, which is an anonymous class.

Finally, the library also has a number of singleton classes that wrap frequently used Java standard library classes:
TypeObject, TypeCloneable, TypeRuntime, TypeSerializable, TypeString, TypeSystem and TypeClass.
Each CodeQL class represents the standard Java class suggested by its name.

As an example, we can write a query that finds all nested classes that directly extend Object:

import java

from NestedClass nc
where nc.getASupertype() instanceof TypeObject
select nc

See this in the query console on LGTM.com. Youre likely to get many results when you run this query because
many projects include nested classes that extend Object directly.

Generics

There are also several subclasses of Type for dealing with generic types.

A GenericType is either a GenericInterface or a GenericClass. It represents a generic type declaration such
as interface java.util.Map from the Java standard library:

package java.util.;

public interface Map<K, V> {

int size();

Zane

Type parameters, such as K and V in this example, are represented by class TypeVariable.

158 Chapter 6. CodeQL for Java

https://lgtm.com/query/4340983612585284460/
https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html
https://lgtm.com/query/8482509736206423238/

Learning CodeQL, Release 1.24

A parameterized instance of a generic type provides a concrete type to instantiate the type parameter with,
as in Map<String, File>. Such a type is represented by a ParameterizedType, which is distinct from the
GenericType representing the generic type it was instantiated from. To go from a ParameterizedType to its
corresponding GenericType, you can use predicate getSourceDeclaration.

For instance, we could use the following query to find all parameterized instances of java.util.Map:

import java

from GenericInterface map, ParameterizedType pt

where map.hasQualifiedName("java.util", "Map") and
pt.getSourceDeclaration() = map

select pt

See this in the query console on LGTM.com. None of the LGTM.com demo projects contain parameterized
instances of java.util.Map in their source code, but they all have results in reference files.

In general, generic types may restrict which types a type parameter can be bound to. For instance, a type of maps
from strings to numbers could be declared as follows:

class StringToNumMap<N extends Number> implements Map<String, N> {
V2N

This means that a parameterized instance of StringToNumberMap can only instantiate type parameter N with
type Number or one of its subtypes but not, for example, with File. We say that N is a bounded type param-
eter, with Number as its upper bound. In QL, a type variable can be queried for its type bound using predicate
getATypeBound. The type bounds themselves are represented by class TypeBound, which has a member predicate
getType to retrieve the type the variable is bounded by.

As an example, the following query finds all type variables with type bound Number:

import java

from TypeVariable tv, TypeBound tb
where tb = tv.getATypeBound() and

tb.getType () .hasQualifiedName("java.lang", "Number")
select tv

See this in the query console on LGTM.com. When we ran it on the LGTM.com demo projects, the neo4j/neo4j,
hibernate /hibernate-orm and apache /hadoop projects all contained examples of this pattern.

For dealing with legacy code that is unaware of generics, every generic type has a raw version without any type
parameters. In the CodeQL libraries, raw types are represented using class RawType, which has the expected
subclasses RawClass and RawInterface. Again, there is a predicate getSourceDeclaration for obtaining the
corresponding generic type. As an example, we can find variables of (raw) type Map:

import java

from Variable v, RawType rt
where rt = v.getType() and

rt.getSourceDeclaration() .hasQualifiedName("java.util", "Map")
select v

6.2. CodeQL library for Java 159

https://lgtm.com/query/7863873821043873550/
https://lgtm.com/query/6740696080876162817/

Learning CodeQL, Release 1.24

See this in the query console on LGTM.com. Many projects have variables of raw type Map.

For example, in the following code snippet this query would find m1, but not m2:

Map ml = new HashMap();
Map<String, String> m2 = new HashMap<String, String>();

Finally, variables can be declared to be of a wildcard type:

Map<? extends Number, 7 super Float> m;

The wildcards ? extends Number and ? super Float are represented by class WildcardTypeAccess. Like
type parameters, wildcards may have type bounds. Unlike type parameters, wildcards can have upper bounds (as
in 7 extends Number), and also lower bounds (as in ? super Float). Class WildcardTypeAccess provides
member predicates getUpperBound and getLowerBound to retrieve the upper and lower bounds, respectively.

For dealing with generic methods, there are classes GenericMethod, ParameterizedMethod and RawMethod,
which are entirely analogous to the like-named classes for representing generic types.

For more information on working with types, see the article on Java types.

Variables

Class Variable represents a variable in the Java sense, which is either a member field of a class (whether static or
not), or a local variable, or a parameter. Consequently, there are three subclasses catering to these special cases:

* Field represents a Java field.
* LocalVariableDecl represents a local variable.

* Parameter represents a parameter of a method or constructor.

6.2.4 Abstract syntax tree

Classes in this category represent abstract syntax tree (AST) nodes, that is, statements (class Stmt) and expressions
(class Expr). For a full list of expression and statement types available in the standard QL library, see Abstract
syntax tree classes for working with Java programs.

Both Expr and Stmt provide member predicates for exploring the abstract syntax tree of a program:
* Expr.getAChildExpr returns a sub-expression of a given expression.
* Stmt.getAChild returns a statement or expression that is nested directly inside a given statement.
* Expr.getParent and Stmt.getParent return the parent node of an AST node.

For example, the following query finds all expressions whose parents are return statements:

import java

from Expr e
where e.getParent() instanceof ReturnStmt
select e

See this in the query console on LGTM.com. Many projects have examples of return statements with child
expressions.

160 Chapter 6. CodeQL for Java

https://lgtm.com/query/4032913402499547882/
https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
https://lgtm.com/query/1947757851560375919/

Learning CodeQL, Release 1.24

Therefore, if the program contains a return statement return x + y;, this query will return x + y.

As another example, the following query finds statements whose parent is an if statement:

import java

from Stmt s
where s.getParent() instanceof IfStmt
select s

See this in the query console on LGTM.com. Many projects have examples of if statements with child statements.
This query will find both then branches and else branches of all if statements in the program.

Finally, here is a query that finds method bodies:

import java

from Stmt s
where s.getParent() instanceof Method
select s

See this in the query console on LGTM.com. Most projects have many method bodies.

As these examples show, the parent node of an expression is not always an expression: it may also be a statement,
for example, an IfStmt. Similarly, the parent node of a statement is not always a statement: it may also be
a method or a constructor. To capture this, the QL Java library provides two abstract class ExprParent and
StmtParent, the former representing any node that may be the parent node of an expression, and the latter any
node that may be the parent node of a statement.

For more information on working with AST classes, see the article on overflow-prone comparisons in Java.

6.2.5 Metadata

Java programs have several kinds of metadata, in addition to the program code proper. In particular, there are
annotations and Javadoc comments. Since this metadata is interesting both for enhancing code analysis and as
an analysis subject in its own right, the QL library defines classes for accessing it.

For annotations, class Annotatable is a superclass of all program elements that can be annotated. This includes
packages, reference types, fields, methods, constructors, and local variable declarations. For every such element,
its predicate getAnAnnotation allows you to retrieve any annotations the element may have. For example, the
following query finds all annotations on constructors:

import java

from Constructor c
select c.getAnAnnotation()

See this in the query console on LGTM.com. The LGTM.com demo projects all use annotations, you can see
examples where they are used to suppress warnings and mark code as deprecated.

These annotations are represented by class Annotation. An annotation is simply an expression whose type is an
AnnotationType. For example, you can amend this query so that it only reports deprecated constructors:

6.2. CodeQL library for Java 161

https://lgtm.com/query/1989464153689219612/
https://lgtm.com/query/1016821702972128245/
https://docs.oracle.com/javase/tutorial/java/annotations/
https://en.wikipedia.org/wiki/Javadoc
https://lgtm.com/query/3206112561297137365/

Learning CodeQL, Release 1.24

import java

from Constructor c, Annotation ann, AnnotationType anntp
where ann = c.getAnAnnotation() and
anntp = ann.getType() and
anntp.hasQualifiedName("java.lang", "Deprecated")

select ann

See this in the query console on LGTM.com. Only constructors with the @Deprecated annotation are reported
this time.

For more information on working with annotations, see the article on annotations.

For Javadoc, class Element has a member predicate getDoc that returns a delegate Documentable object, which
can then be queried for its attached Javadoc comments. For example, the following query finds Javadoc comments
on private fields:

import java

from Field f, Javadoc jdoc
where f.isPrivate() and

jdoc = f.getDoc() .getJavadoc()
select jdoc

See this in the query console on LGTM.com. You can see this pattern in many projects.

Class Javadoc represents an entire Javadoc comment as a tree of JavadocElement nodes, which can be traversed
using member predicates getAChild and getParent. For instance, you could edit the query so that it finds all
@author tags in Javadoc comments on private fields:

import java

from Field f, Javadoc jdoc, AuthorTag at
where f.isPrivate() and
jdoc = f.getDoc().getJavadoc() and
at.getParent+() = jdoc
select at

See this in the query console on LGTM.com. None of the LGTM.com demo projects uses the @author tag on
private fields.

Note

On line 5 we used getParent+ to capture tags that are nested at any depth within the Javadoc
comment.

For more information on working with Javadoc, see the article on Javadoc.

6.2.6 Metrics

The standard QL Java library provides extensive support for computing metrics on Java program elements. To
avoid overburdening the classes representing those elements with too many member predicates related to metric
computations, these predicates are made available on delegate classes instead.

162 Chapter 6. CodeQL for Java

https://lgtm.com/query/5393027107459215059/
https://lgtm.com/query/6022769142134600659/
https://lgtm.com/query/2510220694395289111/

Learning CodeQL, Release 1.24

Altogether, there are six such classes: MetricElement, MetricPackage, MetricRefType, MetricField,
MetricCallable, and MetricStmt. The corresponding element classes each provide a member predicate
getMetrics that can be used to obtain an instance of the delegate class, on which metric computations can
then be performed.

For example, the following query finds methods with a cyclomatic complexity greater than 40:

import java

from Method m, MetricCallable mc
where mc = m.getMetrics() and

mc.getCyclomaticComplexity() > 40
select m

See this in the query console on LGTM.com. Most large projects include some methods with a very high cyclomatic
complexity. These methods are likely to be difficult to understand and test.

6.2.7 Call graph

CodeQL databases generated from Java code bases include precomputed information about the programs call
graph, that is, which methods or constructors a given call may dispatch to at runtime.

The class Callable, introduced above, includes both methods and constructors. Call expressions are abstracted
using class Call, which includes method calls, new expressions, and explicit constructor calls using this or super.

We can use predicate Call.getCallee to find out which method or constructor a specific call expression refers
to. For example, the following query finds all calls to methods called println:

import java

from Call c, Method m

where m = c.getCallee() and
m.hasName ("println")

select ¢

See this in the query console on LGTM.com. The LGTM.com demo projects all include many calls to methods of
this name.

Conversely, Callable.getAReference returns a Call that refers to it. So we can find methods and constructors
that are never called using this query:

import java

from Callable c
where not exists(c.getAReference())
select c

See this in the query console on LGTM.com. The LGTM.com demo projects all appear to have many methods
that are not called directly, but this is unlikely to be the whole story. To explore this area further, see Navigating
the call graph.

For more information about callables and calls, see the article on the call graph.

6.2. CodeQL library for Java 163

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://lgtm.com/query/6566950741051181919/
https://lgtm.com/query/5861255162551917595/
https://lgtm.com/query/7261739919657747703/

Learning CodeQL, Release 1.24

6.2.8 Further reading
* CodeQL queries for Java

¢ Example queries for Java

CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

6.3 Analyzing data flow in Java

You can use CodeQL to track the flow of data through a Java program to its use.

6.3.1 About this article

This article describes how data flow analysis is implemented in the CodeQL libraries for Java and includes exam-
ples to help you write your own data flow queries. The following sections describe how to use the libraries for
local data flow, global data flow, and taint tracking.

For a more general introduction to modeling data flow, see About data flow analysis.

6.3.2 Local data flow

Local data flow is data flow within a single method or callable. Local data flow is usually easier, faster, and more
precise than global data flow, and is sufficient for many queries.

Using local data flow

The local data flow library is in the module DataF1low, which defines the class Node denoting any element that data
can flow through. Nodes are divided into expression nodes (ExprNode) and parameter nodes (ParameterNode).
You can map between data flow nodes and expressions/parameters using the member predicates asExpr and
asParameter:

class Node {
/** Gets the expression corresponding to this mode, if any. */
Expr asExpr() { ... }

/** Gets the parameter corresponding to this node, if any. */
Parameter asParameter() { ... }

or using the predicates exprNode and parameterNode:

VL]

* (Gets the node corresponding to expression e .
*/

ExprNode exprNode(Expr e) { ... }

(continues on next page)

164 Chapter 6. CodeQL for Java

https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

(continued from previous page)

k%
* (Gets the node corresponding to the value of parameter 'p° at function entry.
*/

ParameterNode parameterNode(Parameter p) { ... }

The predicate localFlowStep(Node nodeFrom, Node nodeTo) holds if there is an immediate data flow edge
from the node nodeFrom to the node nodeTo. You can apply the predicate recursively by using the + and *
operators, or by using the predefined recursive predicate localFlow, which is equivalent to localFlowStep*.

For example, you can find flow from a parameter source to an expression sink in zero or more local steps:

DataFlow: :localFlow(DataFlow: : parameterNode (source), DataFlow: :exprNode(sink))

Using local taint tracking

Local taint tracking extends local data flow by including non-value-preserving flow steps. For example:

String temp = x;
String y = temp + ", " + temp;

If x is a tainted string then y is also tainted.

The local taint tracking library is in the module TaintTracking. Like local data flow, a predicate
localTaintStep(DataFlow: :Node nodeFrom, DataFlow::Node nodeTo) holds if there is an immediate taint
propagation edge from the node nodeFrom to the node nodeTo. You can apply the predicate recursively by us-
ing the + and * operators, or by using the predefined recursive predicate localTaint, which is equivalent to
localTaintStep*.

For example, you can find taint propagation from a parameter source to an expression sink in zero or more local
steps:

TaintTracking: :localTaint (DataFlow: : parameterNode (source), DataFlow: :exprNode (sink))

Examples

This query finds the filename passed to new FileReader(..).

import java

from Constructor fileReader, Call call

where
fileReader.getDeclaringType() .hasQualifiedName("java.io", "FileReader") and
call.getCallee() = fileReader

select call.getArgument(0)

Unfortunately, this only gives the expression in the argument, not the values which could be passed to it. So we
use local data flow to find all expressions that flow into the argument:

import java
import semmle.code.java.dataflow.DataFlow

(continues on next page)

6.3. Analyzing data flow in Java 165

Learning CodeQL, Release 1.24

(continued from previous page)

from Constructor fileReader, Call call, Expr src
where
fileReader.getDeclaringType() .hasQualifiedName("java.io", "FileReader") and
call.getCallee() = fileReader and
DataFlow: :localFlow(DataFlow: :exprNode(src), DataFlow::exprNode(call.getArgument(0)))
select src

Then we can make the source more specific, for example an access to a public parameter. This query finds where
a public parameter is passed to new FileReader(..):

import java
import semmle.code.java.dataflow.DataFlow

from Constructor fileReader, Call call, Parameter p
where
fileReader.getDeclaringType() .hasQualifiedName("java.io", "FileReader") and
call.getCallee() = fileReader and
DataFlow: :localFlow(DataFlow: : parameterNode(p) , DataFlow: :exprNode(call.getArgument (0)))
select p

This query finds calls to formatting functions where the format string is not hard-coded.

import java
import semmle.code.java.dataflow.DataFlow
import semmle.code.java.StringFormat

from StringFormatMethod format, MethodAccess call, Expr formatString
where
call.getMethod() = format and
call.getArgument (format.getFormatStringIndex()) = formatString and
not exists(DataFlow: :Node source, DataFlow::Node sink |
DataFlow: :localFlow(source, sink) and
source.asExpr() instanceof StringlLiteral and
sink.asExpr() = formatString
)

select call, "Argument to String format method isn't hard-coded."

Exercises

Exercise 1: Write a query that finds all hard-coded strings used to create a java.net.URL, using local data flow.
(Answer)

6.3.3 Global data flow

Global data flow tracks data flow throughout the entire program, and is therefore more powerful than local data
flow. However, global data flow is less precise than local data flow, and the analysis typically requires significantly
more time and memory to perform.

Note

166 Chapter 6. CodeQL for Java

Learning CodeQL, Release 1.24

You can model data flow paths in CodeQL by creating path queries. To view data flow paths generated
by a path query in CodeQL for VS Code, you need to make sure that it has the correct metadata and
select clause. For more information, see Creating path queries.

Using global data flow

You use the global data flow library by extending the class DataFlow: : Configuration:

import semmle.code.java.dataflow.DataFlow

class MyDataFlowConfiguration extends DataFlow::Configuration {
MyDataFlowConfiguration() { this = "MyDataFlowConfiguration" }

override predicate isSource(DataFlow::Node source) {

override predicate isSink(DataFlow::Node sink) {

These predicates are defined in the configuration:
* isSourcedefines where data may flow from
* isSinkdefines where data may flow to
e isBarrieroptional, restricts the data flow
* isAdditionalFlowStepoptional, adds additional flow steps

The characteristic predicate MyDataFlowConfiguration() defines the name of the configuration, so
"MyDataFlowConfiguration" should be a unique name, for example, the name of your class.

The data flow analysis is performed using the predicate hasFlow(DataFlow: :Node source, DataFlow::Node
sink):

from MyDataFlowConfiguration dataflow, DataFlow::Node source, DataFlow::Node sink
where dataflow.hasFlow(source, sink)

select source, "Data flow to $0.", sink, sink.toString()

Using global taint tracking

Global taint tracking is to global data flow as local taint tracking is to local data flow. That is, global taint tracking
extends global data flow with additional non-value-preserving steps. You use the global taint tracking library by
extending the class TaintTracking: :Configuration:

import semmle.code.java.dataflow.TaintTracking

class MyTaintTrackingConfiguration extends TaintTracking::Configuration {
MyTaintTrackingConfiguration() { this = "MyTaintTrackingConfiguration" }

override predicate isSource(DataFlow::Node source) {

(continues on next page)

6.3. Analyzing data flow in Java 167

https://help.semmle.com/QL/learn-ql/writing-queries/path-queries.html

Learning CodeQL, Release 1.24

(continued from previous page)

override predicate isSink(DataFlow::Node sink) {

These predicates are defined in the configuration:
* isSourcedefines where taint may flow from
* isSinkdefines where taint may flow to
* isSanitizeroptional, restricts the taint flow
* isAdditionalTaintStepoptional, adds additional taint steps

Similar to global data flow, the characteristic predicate MyTaintTrackingConfiguration() defines the unique
name of the configuration.

The taint tracking analysis is performed using the predicate hasFlow(DataFlow::Node source,
DataFlow: :Node sink).
Flow sources

The data flow library contains some predefined flow sources. The class RemoteFlowSource (defined in semmle.
code.java.dataflow.FlowSources) represents data flow sources that may be controlled by a remote user,
which is useful for finding security problems.

Examples

This query shows a taint-tracking configuration that uses remote user input as data sources.

import java
import semmle.code.java.dataflow.FlowSources

class MyTaintTrackingConfiguration extends TaintTracking::Configuration {
MyTaintTrackingConfiguration() {
this = "..."

override predicate isSource(DataFlow::Node source) {
source instanceof RemoteFlowSource

Exercises

Exercise 2: Write a query that finds all hard-coded strings used to create a java.net.URL, using global data flow.
(Answer)

168 Chapter 6. CodeQL for Java

Learning CodeQL, Release 1.24

Exercise 3: Write a class that represents flow sources from java.lang.System.getenv(..). (Answer)

Exercise 4: Using the answers from 2 and 3, write a query which finds all global data flows from getenv to
java.net.URL. (Answer)

6.3.4 Answers

Exercise 1

import semmle.code.java.dataflow.DataFlow

from Constructor url, Call call, StringLiteral src
where

url.getDeclaringType() .hasQualifiedName("java.net", "URL") and

call.getCallee() = url and

DataFlow: :localFlow(DataFlow: :exprNode(src), DataFlow::exprNode(call.getArgument(0)))
select src

Exercise 2

import semmle.code.java.dataflow.DataFlow

class Configuration extends DataFlow::Configuration {
Configuration() {
this = "LiteralToURL Configuration"

override predicate isSource(DataFlow::Node source) {
source.asExpr() instanceof StringLiteral

}

override predicate isSink(DataFlow::Node sink) {
exists(Call call |
sink.asExpr() = call.getArgument(0) and
call.getCallee() . (Constructor).getDeclaringType() .hasQualifiedName("java.net", "URL")

from DataFlow: :Node src, DataFlow::Node sink, Configuration config
where config.hasFlow(src, sink)
select src, "This string constructs a URL $@.", sink, "here"

Exercise 3

import java

class GetenvSource extends MethodAccess {
GetenvSource() {
exists(Method m | m = this.getMethod() |
m.hasName ("getenv") and

(continues on next page)

6.3. Analyzing data flow in Java 169

Learning CodeQL, Release 1.24

(continued from previous page)

m.getDeclaringType() instanceof TypeSystem
)

Exercise 4

import semmle.code.java.dataflow.DataFlow

class GetenvSource extends DataFlow: :ExprNode {
GetenvSource() {
exists(Method m | m = this.asExpr().(MethodAccess).getMethod() |
m.hasName ("getenv") and
m.getDeclaringType() instanceof TypeSystem
)

class GetenvToURLConfiguration extends DataFlow::Configuration {
GetenvToURLConfiguration() {
this = "GetenvToURLConfiguration"

override predicate isSource(DataFlow::Node source) {
source instanceof GetenvSource

override predicate isSink(DataFlow::Node sink) {
exists(Call call |
sink.asExpr() = call.getArgument(0) and
call.getCallee() . (Constructor).getDeclaringType() .hasQualifiedName("java.net", "URL")

from DataFlow: :Node src, DataFlow::Node sink, GetenvToURLConfiguration config
where config.hasFlow(src, sink)
select src, "This environment variable constructs a URL $@.", sink, "here"

6.3.5 Further reading
* Exploring data flow with path queries
* CodeQL queries for Java

* Example queries for Java

CodeQL library reference for Java
* QL language reference

* CodeQL tools

170 Chapter 6. CodeQL for Java

https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

6.4 Java types

You can use CodeQL to find out information about data types used in Java code. This allows you to write queries
to identify specific type-related issues.

6.4.1 About working with Java types
The standard CodeQL library represents Java types by means of the Type class and its various subclasses.

In particular, class PrimitiveType represents primitive types that are built into the Java language (such as
boolean and int), whereas RefType and its subclasses represent reference types, that is classes, interfaces,
array types, and so on. This includes both types from the Java standard library (like java.lang.0Object) and
types defined by non-library code.

Class Ref Type also models the class hierarchy: member predicates getASupertype and getASubtype allow you
to find a reference types immediate super types and sub types. For example, consider the following Java program:

class A {}
interface I {}

class B extends A implements I {}

Here, class A has exactly one immediate super type (java.lang.0bject) and exactly one immediate sub type
(B); the same is true of interface I. Class B, on the other hand, has two immediate super types (A and I), and no
immediate sub types.

To determine ancestor types (including immediate super types, and also their super types, etc.), we can use
transitive closure. For example, to find all ancestors of B in the example above, we could use the following query:

import java

from Class B
where B.hasName("B")
select B.getASupertype+()

See this in the query console on LGTM.com. If this query were run on the example snippet above, the query
would return 4, I, and java.lang.0Object.

Tip

If you want to see the location of B as well as A, you can replace B.getASupertype+() with B.

getASupertype* () and re-run the query.

Besides class hierarchy modeling, RefType also provides member predicate getAMember for accessing members
(that is, fields, constructors, and methods) declared in the type, and predicate inherits(Method m) for checking
whether the type either declares or inherits a method m.

6.4.2 Example: Finding problematic array casts

As an example of how to use the class hierarchy API, we can write a query that finds downcasts on arrays, that is,
cases where an expression e of some type A[] is converted to type B[], such that B is a (not necessarily immediate)
subtype of A.

6.4. Java types 171

https://lgtm.com/query/1506430738755934285/

Learning CodeQL, Release 1.24

This kind of cast is problematic, since downcasting an array results in a runtime exception, even if every individual
array element could be downcast. For example, the following code throws a ClassCastException:

Object[] o = new Object[] { "Hello", "world" };
(String[l)o;

String[] s

If the expression e happens to actually evaluate to a B[] array, on the other hand, the cast will succeed:

Object[] o = new String[] { "Hello", "world" };
String[] s = (Stringl[])o;

In this tutorial, we dont try to distinguish these two cases. Our query should simply look for cast expressions ce
that cast from some type source to another type target, such that:

* Both source and target are array types.
* The element type of source is a transitive super type of the element type of target.

This recipe is not too difficult to translate into a query:

import java

from CastExpr ce, Array source, Array target
where source = ce.getExpr().getType() and
target = ce.getType() and
target.getElementType () . (RefType) .getASupertype+() = source.getElementType()
select ce, "Potentially problematic array downcast."

See this in the query console on LGTM.com. Many projects return results for this query.

Note that by casting target.getElementType () to a RefType, we eliminate all cases where the element type
is a primitive type, that is, target is an array of primitive type: the problem we are looking for cannot arise in
that case. Unlike in Java, a cast in QL never fails: if an expression cannot be cast to the desired type, it is simply
excluded from the query results, which is exactly what we want.

Improvements

Running this query on old Java code, before version 5, often returns many false positive results arising from uses
of the method Collection.toArray(T[]), which converts a collection into an array of type T[].

In code that does not use generics, this method is often used in the following way:

List 1 = new ArrayList();
// add some elements of type A to 1
A[] as = (A[])1.toArray(new A[0]);

Here, 1 has the raw type List, so 1.toArray has return type Object [1, independent of the type of its argument
array. Hence the cast goes from Object[] to A[] and will be flagged as problematic by our query, although at
runtime this cast can never go wrong.

To identify these cases, we can create two CodeQL classes that represent, respectively, the Collection.toArray
method, and calls to this method or any method that overrides it:

172 Chapter 6. CodeQL for Java

https://lgtm.com/query/8378564667548381869/

Learning CodeQL, Release 1.24

/** class representing java.util.Collection.todrray(T[]) */
class CollectionToArray extends Method {
CollectionToArray() {
this.getDeclaringType() .hasQualifiedName("java.util", "Collection") and
this.hasName("toArray") and
this.getNumberOfParameters() = 1

/** class representing calls to java.util.Collection.toAdrray(T[]) */
class CollectionToArrayCall extends MethodAccess {
CollectionToArrayCall() {
exists(CollectionToArray m |
this.getMethod () .getSourceDeclaration() .overridesOrInstantiates*(m)

/*% the call's actual return type, as determined from its argument */
Array getActualReturnType() {
result = this.getArgument(0).getType()

Notice the use of getSourceDeclaration and overridesOrInstantiates in the constructor of
CollectionToArrayCall: we want to find calls to Collection.toArray and to any method that over-
rides it, as well as any parameterized instances of these methods. In our example above, for instance, the call
1.toArray resolves to method toArray in the raw class ArrayList. Its source declaration is toArray in the
generic class ArrayList<T>, which overrides AbstractCollection<T>.toArray, which in turn overrides
Collection<T>.toArray, which is an instantiation of Collection.toArray (since the type parameter T
in the overridden method belongs to ArrayList and is an instantiation of the type parameter belonging to
Collection).

Using these new classes we can extend our query to exclude calls to toArray on an argument of type A[] which
are then cast to A[]:

import java
// Insert the class definitions from above

from CastExpr ce, Array source, Array target

where source = ce.getExpr().getType() and
target = ce.getType() and
target.getElementType () . (RefType) .getASupertype+() = source.getElementType() and
not ce.getExpr().(CollectionToArrayCall) .getActualReturnType() = target

select ce, "Potentially problematic array downcast."

See this in the query console on LGTM.com. Notice that fewer results are found by this improved query.

6.4.3 Example: Finding mismatched contains checks

Well now develop a query that finds uses of Collection.contains where the type of the queried element is
unrelated to the element type of the collection, which guarantees that the test will always return false.

6.4. Java types 173

https://lgtm.com/query/3150404889854131463/

Learning CodeQL, Release 1.24

For example, Apache Zookeeper used to have a snippet of code similar to the following in class
QuorumPeerConfig:

Map<Object, Object> zkProp;
VZa

if (zkProp.entrySet().contains("dynamicConfigFile")){
/.

Since zkProp is a map from Object to Object, zkProp.entrySet returns a collection of type
Set<Entry<Object, Object>>. Such a set cannot possibly contain an element of type String. (The code
has since been fixed to use zkProp.containsKey.)

In general, we want to find calls to Collection. contains (or any of its overriding methods in any parameterized
instance of Collection), such that the type E of collection elements and the type A of the argument to contains
are unrelated, that is, they have no common subtype.

We start by creating a class that describes java.util.Collection:

class JavaUtilCollection extends GenericInterface {
JavaUtilCollection() {
this.hasQualifiedName("java.util", "Collection")

To make sure we have not mistyped anything, we can run a simple test query:

from JavaUtilCollection juc
select juc

This query should return precisely one result.

Next, we can create a class that describes java.util.Collection.contains:

class JavaUtilCollectionContains extends Method {
JavaUtilCollectionContains() {
this.getDeclaringType() instanceof JavaUtilCollection and
this.hasStringSignature("contains(Object)")

Notice that we use hasStringSignature to check that:
* The method in question has name contains.
It has exactly one argument.
* The type of the argument is Object.

Alternatively, we could have implemented these three checks more verbosely using hasName,
getNumberOfParameters, and getParameter (0) .getType() instanceof TypeObject.

174 Chapter 6. CodeQL for Java

https://zookeeper.apache.org/

Learning CodeQL, Release 1.24

As before, it is a good idea to test the new class by running a simple query to select all instances of
JavaUtilCollectionContains; again there should only be a single result.

Now we want to identify all calls to Collection.contains, including any methods that override it, and consid-
ering all parameterized instances of Collection and its subclasses. That is, we are looking for method accesses
where the source declaration of the invoked method (reflexively or transitively) overrides Collection.contains.
We encode this in a CodeQL class JavaUtilCollectionContainsCall:

class JavaUtilCollectionContainsCall extends MethodAccess {
JavaUtilCollectionContainsCall() {
exists(JavaUtilCollectionContains jucc |
this.getMethod() .getSourceDeclaration() .overrides* (jucc)

This definition is slightly subtle, so you should run a short query to test that JavaUtilCollectionContainsCall
correctly identifies calls to Collection.contains.

For every call to contains, we are interested in two things: the type of the argument, and the element type
of the collection on which it is invoked. So we need to add two member predicates getArgumentType and
getCollectionElementType to class JavaUtilCollectionContainsCall to compute this information.

The former is easy:

Type getArgumentType() {
result = this.getArgument(0).getType()

For the latter, we proceed as follows:
* Find the declaring type D of the contains method being invoked.
* Find a (reflexive or transitive) super type S of D that is a parameterized instance of java.util.Collection.
* Return the (only) type argument of S.

We encode this as follows:

Type getCollectionElementType() {
exists(RefType D, ParameterizedInterface S |
D = this.getMethod() .getDeclaringType() and
D.hasSupertype*(S) and S.getSourceDeclaration() instanceof JavaUtilCollection and
result = S.getTypeArgument (0)

Having added these two member predicates to JavaUtilCollectionContainsCall, we need to write a predicate
that checks whether two given reference types have a common subtype:

predicate haveCommonDescendant (RefType tpl, RefType tp2) {
exists(RefType commondesc | commondesc.hasSupertype*(tpl) and commondesc.hasSupertypex* (tp2))

Now we are ready to write a first version of our query:

6.4. Java types 175

Learning CodeQL, Release 1.24

import java
// Insert the class definitions from above

from JavaUtilCollectionContainsCall juccc, Type collEltType, Type argType

where collEltType = juccc.getCollectionElementType() and argType = juccc.getArgumentType() and
not haveCommonDescendant (collE1tType, argType)

select juccc, "Element type " + collEltType + " is incompatible with argument type " + argType

See this in the query console on LGTM.com.

Improvements

For many programs, this query yields a large number of false positive results due to type variables and wild cards:
if the collection element type is some type variable E and the argument type is String, for example, CodeQL will
consider that the two have no common subtype, and our query will flag the call. An easy way to exclude such
false positive results is to simply require that neither col1E1tType nor argType are instances of TypeVariable.

Another source of false positives is autoboxing of primitive types: if, for example, the collections element type is
Integer and the argument is of type int, predicate haveCommonDescendant will fail, since int is not a RefType.
To account for this, our query should check that co11E1tType is not the boxed type of argType.

Finally, null is special because its type (known as <nulltype> in the CodeQL library) is compatible with every
reference type, so we should exclude it from consideration.

Adding these three improvements, our final query becomes:

import java
// Insert the class definitions from above

from JavaUtilCollectionContainsCall juccc, Type collEltType, Type argType
where collEltType = juccc.getCollectionElementType() and argType = juccc.getArgumentType() and
not haveCommonDescendant (collE1tType, argType) and
not collEltType instanceof TypeVariable and not argType instanceof TypeVariable and
not collEltType = argType.(PrimitiveType) .getBoxedType() and
not argType.hasName("<nulltype>")
select juccc, "Element type " + collEltType + " is incompatible with argument type " + argType

See the full query in the query console on LGTM.com.

6.4.4 Further reading
* CodeQL queries for Java

* Example queries for Java

CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

176 Chapter 6. CodeQL for Java

https://lgtm.com/query/7947831380785106258/
https://lgtm.com/query/8846334903769538099/
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

6.5 Overflow-prone comparisons in Java

You can use CodeQL to check for comparisons in Java code where one side of the comparison is prone to overflow.

6.5.1 About this article

In this tutorial article youll write a query for finding comparisons between integers and long integers in loops that
may lead to non-termination due to overflow.

To begin, consider this code snippet:

void foo(long 1) {
for(int i=0; i<l; i++) {
// do something

If 1 is bigger than 23!- 1 (the largest positive value of type int), then this loop will never terminate: i will start
at zero, being incremented all the way up to 23!~ 1, which is still smaller than 1. When it is incremented once
more, an arithmetic overflow occurs, and i becomes -23!, which also is smaller than 1! Eventually, i will reach
zero again, and the cycle repeats.

More about overflow

All primitive numeric types have a maximum value, beyond which they will wrap around to their
lowest possible value (called an overflow). For int, this maximum value is 2311, Type long can
accommodate larger values up to a maximum of 2%%- 1. In this example, this means that 1 can take
on a value that is higher than the maximum for type int; i will never be able to reach this value,
instead overflowing and returning to a low value.

Were going to develop a query that finds code that looks like it might exhibit this kind of behavior. Well be using
several of the standard library classes for representing statements and functions. For a full list, see Abstract syntax
tree classes for working with Java programs.

6.5.2 Initial query

Well start by writing a query that finds less-than expressions (CodeQL class LTExpr) where the left operand is of
type int and the right operand is of type long:

import java

from LTExpr expr

where expr.getLeftOperand() .getType() .hasName("int") and
expr.getRightOperand () .getType () .hasName("long")

select expr

See this in the query console on LGTM.com. This query usually finds results on most projects.

Notice that we use the predicate getType (available on all subclasses of Expr) to determine the type of the
operands. Types, in turn, define the hasName predicate, which allows us to identify the primitive types int and
long. As it stands, this query finds all less-than expressions comparing int and long, but in fact we are only
interested in comparisons that are part of a loop condition. Also, we want to filter out comparisons where either
operand is constant, since these are less likely to be real bugs. The revised query looks like this:

6.5. Overflow-prone comparisons in Java 177

https://lgtm.com/query/490866529746563234/

Learning CodeQL, Release 1.24

import java

from LTExpr expr

where expr.getLeftOperand() .getType() .hasName("int") and
expr.getRightOperand () .getType () .hasName("long") and
exists(LoopStmt 1 | 1.getCondition().getAChildExpr*() = expr) and
not expr.getAnOperand() .isCompileTimeConstant ()

select expr

See this in the query console on LGTM.com. Notice that fewer results are found.

The class LoopStmt is a common superclass of all loops, including, in particular, for loops as in our example above.
While different kinds of loops have different syntax, they all have a loop condition, which can be accessed through
predicate getCondition. We use the reflexive transitive closure operator * applied to the getAChildExpr pred-
icate to express the requirement that expr should be nested inside the loop condition. In particular, it can be the
loop condition itself.

The final conjunct in the where clause takes advantage of the fact that predicates can return more than one
value (they are really relations). In particular, getAnOperand may return either operand of expr, so expr.
getAnOperand () . isCompileTimeConstant () holds if at least one of the operands is constant. Negating this
condition means that the query will only find expressions where neither of the operands is constant.

6.5.3 Generalizing the query

Of course, comparisons between int and long are not the only problematic case: any less-than comparison
between a narrower and a wider type is potentially suspect, and less-than-or-equals, greater-than, and greater-
than-or-equals comparisons are just as problematic as less-than comparisons.

In order to compare the ranges of types, we define a predicate that returns the width (in bits) of a given integral
type:

int width(PrimitiveType pt) {
(pt.hasName("byte") and result=8) or
(pt.hasName("short") and result=16) or
(pt.hasName("char") and result=16) or
(pt.hasName("int") and result=32) or
(pt.hasName("long") and result=64)

We now want to generalize our query to apply to any comparison where the width of the type on the smaller
end of the comparison is less than the width of the type on the greater end. Lets call such a comparison overflow
prone, and introduce an abstract class to model it:

abstract class OverflowProneComparison extends ComparisonExpr {
Expr getLesserOperand() { none() }
Expr getGreaterOperand() { none() }

There are two concrete child classes of this class: one for <= or < comparisons, and one for >= or > comparisons.
In both cases, we implement the constructor in such a way that it only matches the expressions we want:

178 Chapter 6. CodeQL for Java

https://lgtm.com/query/4315986481180063825/
https://help.semmle.com/QL/ql-handbook/predicates.html

Learning CodeQL, Release 1.24

class LTOverflowProneComparison extends OverflowProneComparison {
LTOverflowProneComparison() {
(this instanceof LEExpr or this instanceof LTExpr) and
width(this.getLeftOperand() .getType()) < width(this.getRightOperand().getType())

class GTOverflowProneComparison extends OverflowProneComparison {
GTOverflowProneComparison() {
(this instanceof GEExpr or this instanceof GTExpr) and
width(this.getRightOperand() .getType()) < width(this.getLeftOperand().getType())

Now we rewrite our query to make use of these new classes:

import Java
// Insert the class definitions from above

from OverflowProneComparison expr

where exists(LoopStmt 1 | 1.getCondition().getAChildExpr*() = expr) and
not expr.getAnOperand().isCompileTimeConstant ()

select expr

See the full query in the query console on LGTM.com.

6.5.4 Further reading
* CodeQL queries for Java
¢ Example queries for Java
* CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

6.6 Navigating the call graph

CodeQL has classes for identifying code that calls other code, and code that can be called from elsewhere. This
allows you to find, for example, methods that are never used.

6.6.1 Call graph classes

The CodeQL library for Java provides two abstract classes for representing a programs call graph: Callable
and Call. The former is simply the common superclass of Method and Constructor, the latter is a
common superclass of MethodAccess, ClassInstanceExpression, ThisConstructorInvocationStmt and
SuperConstructorInvocationStmt. Simply put, a Callable is something that can be invoked, and a Call
is something that invokes a Callable.

For example, in the following program all callables and calls have been annotated with comments:

6.6. Navigating the call graph 179

https://lgtm.com/query/506868054626167462/
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

class Super {
int x;

// callable
public Super() {
this(23); // call

// callable
public Super(int x) {
this.x = x;

// callable
public int getX() {
return x;

class Sub extends Super {
// callable
public Sub(int x) {

super (x+19) ; // call

// callable
public int getX() {
return x-19;

class Client {
// callable
public static void main(String[] args) {
Super s = new Sub(42); // call
s.getX(Q; // call

Class Call provides two call graph navigation predicates:

* getCalleereturns the Callable that this call (statically) resolves to; note that for a call to an instance (that
is, non-static) method, the actual method invoked at runtime may be some other method that overrides this
method.

* getCaller returns the Callable of which this call is syntactically part.

For instance, in our example getCallee of the second call in Client .main would return Super . getX. At runtime,
though, this call would actually invoke Sub. getX.

Class Callable defines a large number of member predicates; for our purposes, the two most important ones
are:

e calls(Callable target) succeeds if this callable contains a call whose callee is target.

180 Chapter 6. CodeQL for Java

Learning CodeQL, Release 1.24

* polyCalls(Callable target) succeeds if this callable may call target at runtime; this is the case if it
contains a call whose callee is either target or a method that target overrides.

In our example, Client.main calls the constructor Sub(int) and the method Super.getX; additionally, it
polyCalls method Sub.getX.

6.6.2 Example: Finding unused methods

We can use the Callable class to write a query that finds methods that are not called by any other method:

import java

from Callable callee
where not exists(Callable caller | caller.polyCalls(callee))
select callee

See this in the query console on LGTM.com. This simple query typically returns a large number of results.
Note

We have to use polyCalls instead of calls here: we want to be reasonably sure that callee is not
called, either directly or via overriding.

Running this query on a typical Java project results in lots of hits in the Java standard library. This makes sense,
since no single client program uses every method of the standard library. More generally, we may want to exclude
methods and constructors from compiled libraries. We can use the predicate fromSource to check whether a
compilation unit is a source file, and refine our query:

import java

from Callable callee

where not exists(Callable caller | caller.polyCalls(callee)) and
callee.getCompilationUnit () .fromSource()

select callee, "Not called."

See this in the query console on LGTM.com. This change reduces the number of results returned for most projects.

We might also notice several unused methods with the somewhat strange name <clinit>: these are class initializ-
ers; while they are not explicitly called anywhere in the code, they are called implicitly whenever the surrounding
class is loaded. Hence it makes sense to exclude them from our query. While we are at it, we can also exclude
finalizers, which are similarly invoked implicitly:

import java

from Callable callee
where not exists(Callable caller | caller.polyCalls(callee)) and
callee.getCompilationUnit () .fromSource() and
not callee.hasName("<clinit>") and not callee.hasName("finalize")
select callee, "Not called."

See this in the query console on LGTM.com. This also reduces the number of results returned by most projects.

We may also want to exclude public methods from our query, since they may be external API entry points:

6.6. Navigating the call graph 181

https://lgtm.com/query/8376915232270534450/
https://lgtm.com/query/8711624074465690976/
https://lgtm.com/query/925473733866047471/

Learning CodeQL, Release 1.24

import java

from Callable callee

where not exists(Callable caller | caller.polyCalls(callee)) and
callee.getCompilationUnit () .fromSource() and
not callee.hasName("<clinit>") and not callee.hasName("finalize") and
not callee.isPublic()

select callee, "Not called."

See this in the query console on LGTM.com. This should have a more noticeable effect on the number of results
returned.

A further special case is non-public default constructors: in the singleton pattern, for example, a class is provided
with private empty default constructor to prevent it from being instantiated. Since the very purpose of such
constructors is their not being called, they should not be flagged up:

import java

from Callable callee

where not exists(Callable caller | caller.polyCalls(callee)) and
callee.getCompilationUnit () .fromSource() and
not callee.hasName("<clinit>") and not callee.hasName('"finalize") and
not callee.isPublic() and
not callee. (Constructor).getNumberOfParameters() = 0

select callee, "Not called."

See this in the query console on LGTM.com. This change has a large effect on the results for some projects but
little effect on the results for others. Use of this pattern varies widely between different projects.

Finally, on many Java projects there are methods that are invoked indirectly by reflection. So, while there are
no calls invoking these methods, they are, in fact, used. It is in general very hard to identify such methods. A
very common special case, however, is JUnit test methods, which are reflectively invoked by a test runner. The
CodeQL library for Java has support for recognizing test classes of JUnit and other testing frameworks, which we
can employ to filter out methods defined in such classes:

import java

from Callable callee

where not exists(Callable caller | caller.polyCalls(callee)) and
callee.getCompilationUnit () .fromSource() and
not callee.hasName("<clinit>") and not callee.hasName("finalize") and
not callee.isPublic() and
not callee. (Constructor) .getNumberOfParameters() = 0 and
not callee.getDeclaringType() instanceof TestClass

select callee, "Not called."

See this in the query console on LGTM.com. This should give a further reduction in the number of results
returned.

6.6.3 Further reading

* CodeQL queries for Java

182 Chapter 6. CodeQL for Java

https://lgtm.com/query/6284320987237954610/
https://lgtm.com/query/2625028545869146918/
https://lgtm.com/query/2055862421970264112/
https://github.com/github/codeql/tree/master/java/ql/src

Learning CodeQL, Release 1.24

* Example queries for Java

CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

6.7 Annotations in Java

CodeQL databases of Java projects contain information about all annotations attached to program elements.

6.7.1 About working with annotations
Annotations are represented by these CodeQL classes:

e The class Annotatable represents all entities that may have an annotation attached to them (that is, pack-
ages, reference types, fields, methods, and local variables).

* The class AnnotationType represents a Java annotation type, such as java.lang.0Override; annotation
types are interfaces.

¢ The class AnnotationElement represents an annotation element, that is, a member of an annotation type.

e The class Annotation represents an annotation such as @0verride; annotation values can be accessed
through member predicate getValue.

For example, the Java standard library defines an annotation SuppressWarnings that instructs the compiler not
to emit certain kinds of warnings:

package java.lang;

public @interface SuppressWarnings {
String[] value;

SuppressWarnings is represented as an AnnotationType, with value as its only AnnotationElement.

A typical usage of SuppressWarnings would be this annotation for preventing a warning about using raw types:

class A {
@SuppressWarnings("rawtypes")
public A(java.util.List rawlist) {

}

The expression @SuppressWarnings("rawtypes") is represented as an Annotation. The string literal
"rawtypes" is used to initialize the annotation element value, and its value can be extracted from the annotation
by means of the getValue predicate.

We could then write this query to find all @SuppressWarnings annotations attached to constructors, and return
both the annotation itself and the value of its value element:

6.7. Annotations in Java 183

https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

import java

from Constructor c, Annotation ann, AnnotationType anntp
where ann = c.getAnAnnotation() and
anntp = ann.getType() and
anntp.hasQualifiedName (" java.lang", "SuppressWarnings")

select ann, ann.getValue("value")

See the full query in the query console on LGTM.com. Several of the LGTM.com demo projects use the
@SuppressWarnings annotation. Looking at the values of the annotation element returned by the query, we
can see that the apache /activemq project uses the "rawtypes" value described above.

As another example, this query finds all annotation types that only have a single annotation element, which has
name value:

import java

from AnnotationType anntp

where forex(AnnotationElement elt |
elt = anntp.getAnAnnotationElement() |
elt.getName() = "value"

)

select anntp

See the full query in the query console on LGTM.com.

6.7.2 Example: Finding missing @0verride annotations

In newer versions of Java, its recommended (though not required) that you annotate methods that override
another method with an @0verride annotation. These annotations, which are checked by the compiler, serve as
documentation, and also help you avoid accidental overloading where overriding was intended.

For example, consider this example program:

class Super {
public void m() {}

class Subl extends Super {
@0verride public void m() {3}

class Sub2 extends Super {
public void m() {}

Here, both Sub1.m and Sub2.m override Super .m, but only Sub1.m is annotated with @0verride.

Well now develop a query for finding methods like Sub2.m that should be annotated with @0verride, but are
not.

As a first step, lets write a query that finds all @verride annotations. Annotations are expressions, so their type
can be accessed using getType. Annotation types, on the other hand, are interfaces, so their qualified name can

184 Chapter 6. CodeQL for Java

https://lgtm.com/query/1775658606775222283/
https://lgtm.com/query/2145264152490258283/

Learning CodeQL, Release 1.24

be queried using hasQualifiedName. Therefore we can implement the query like this:

import java

from Annotation ann
where ann.getType() .hasQualifiedName("java.lang", "Override")
select ann

As always, it is a good idea to try this query on a CodeQL database for a Java project to make sure it actually
produces some results. On the earlier example, it should find the annotation on Subl.m. Next, we encapsulate
the concept of an @0verride annotation as a CodeQL class:

class OverrideAnnotation extends Annotation {
OverrideAnnotation() {
this.getType () .hasQualifiedName("java.lang", "Override")

This makes it very easy to write our query for finding methods that override another method, but dont have an
@0verride annotation: we use predicate overrides to find out whether one method overrides another, and
predicate getAnAnnotation (available on any Annotatable) to retrieve some annotation.

import java

from Method overriding, Method overridden
where overriding.overrides(overridden) and
not overriding.getAnAnnotation() instanceof OverrideAnnotation
select overriding, "Method overrides another method, but does not have an @Override annotation."

See this in the query console on LGTM.com. In practice, this query may yield many results from compiled library
code, which arent very interesting. Its therefore a good idea to add another conjunct overriding.fromSource ()
to restrict the result to only report methods for which source code is available.

6.7.3 Example: Finding calls to deprecated methods
As another example, we can write a query that finds calls to methods marked with a @Deprecated annotation.

For example, consider this example program:

class A {
@Deprecated void m() {}

@Deprecated void n() {

n();

}

void r() {
n();

}

Here, both A.mand A .n are marked as deprecated. Methods n and r both call m, but note that n itself is deprecated,

6.7. Annotations in Java 185

https://lgtm.com/query/7419756266089837339/

Learning CodeQL, Release 1.24

so we probably should not warn about this call.

As in the previous example, well start by defining a class for representing @Deprecated annotations:

class DeprecatedAnnotation extends Annotation {
DeprecatedAnnotation() {
this.getType() .hasQualifiedName("java.lang", "Deprecated")

Now we can define a class for representing deprecated methods:

class DeprecatedMethod extends Method {
DeprecatedMethod () {
this.getAnAnnotation() instanceof DeprecatedAnnotation

Finally, we use these classes to find calls to deprecated methods, excluding calls that themselves appear in depre-
cated methods:

import java

from Call call
where call.getCallee() instanceof DeprecatedMethod

and not call.getCaller() instanceof DeprecatedMethod
select call, "This call invokes a deprecated method."

In our example, this query flags the call to A.m in A.r, but not the one in A.n.

For more information about the class Call, see Navigating the call graph.

Improvements

The Java standard library provides another annotation type java.lang.SupressWarnings that can be used to
suppress certain categories of warnings. In particular, it can be used to turn off warnings about calls to deprecated
methods. Therefore, it makes sense to improve our query to ignore calls to deprecated methods from inside
methods that are marked with @SuppressWarnings ("deprecated").

For instance, consider this slightly updated example:

class A {
@Deprecated void m() {}

@Deprecated void n() {
m(Q ;

@SuppressWarnings("deprecated")
void r() {
mn();

186 Chapter 6. CodeQL for Java

Learning CodeQL, Release 1.24

Here, the programmer has explicitly suppressed warnings about deprecated calls in A. r, so our query should not
flag the call to A.m any more.

To do so, we first introduce a class for representing all @SuppressWarnings annotations where the string
deprecated occurs among the list of warnings to suppress:

class SuppressDeprecationWarningAnnotation extends Annotation {
SuppressDeprecationWarningAnnotation() {
this.getType() .hasQualifiedName("java.lang", "SuppressWarnings") and
this.getAValue(). (Literal) .getLiteral() .regexpMatch(".*deprecation.*")

Here, we use getAValue () to retrieve any annotation value: in fact, annotation type SuppressWarnings only
has a single annotation element, so every @SuppressWarnings annotation only has a single annotation value.
Then, we ensure that it is a literal, obtain its string value using getLiteral, and check whether it contains the
string deprecation using a regular expression match.

For real-world use, this check would have to be generalized a bit: for example, the OpenJDK Java compiler
allows @SuppressWarnings("all") annotations to suppress all warnings. We may also want to make sure that
deprecation is matched as an entire word, and not as part of another word, by changing the regular expression
to ".*\\bdeprecation\\b.x*".

Now we can extend our query to filter out calls in methods carrying a
SuppressDeprecationWarningAnnotation:

import java
// Insert the class definitions from above

from Call call
where call.getCallee() instanceof DeprecatedMethod

and not call.getCaller() instanceof DeprecatedMethod

and not call.getCaller().getAnAnnotation() instanceof SuppressDeprecationWarningAnnotation
select call, "This call invokes a deprecated method."

See this in the query console on LGTM.com. Its fairly common for projects to contain calls to methods that appear
to be deprecated.

6.7.4 Further reading
¢ CodeQL queries for Java

* Example queries for Java

CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

6.8 Javadoc

You can use CodeQL to find errors in Javadoc comments in Java code.

6.8. Javadoc 187

https://lgtm.com/query/8706367340403790260/
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

6.8.1 About analyzing Javadoc

To access Javadoc associated with a program element, we use member predicate getDoc of class Element, which
returns a Documentable. Class Documentable, in turn, offers a member predicate getJavadoc to retrieve the
Javadoc attached to the element in question, if any.

Javadoc comments are represented by class Javadoc, which provides a view of the comment as a tree of
JavadocElement nodes. Each JavadocElement is either a JavadocTag, representing a tag, or a JavadocText,
representing a piece of free-form text.

The most important member predicates of class Javadoc are:
* getAChild - retrieves a top-level JavadocElement node in the tree representation.
* getVersion - returns the value of the @version tag, if any.
* getAuthor - returns the value of the @author tag, if any.

For example, the following query finds all classes that have both an @author tag and a @version tag, and returns
this information:

import java

from Class c, Javadoc jdoc, string author, string version
where jdoc = c.getDoc().getJavadoc() and

author = jdoc.getAuthor() and

version = jdoc.getVersion()
select ¢, author, version

JavadocElement defines member predicates getAChild and getParent to navigate up and down the tree of
elements. It also provides a predicate getTagName to return the tags name, and a predicate getText to access
the text associated with the tag.

We could rewrite the above query to use this API instead of getAuthor and getVersion:

import java

from Class c, Javadoc jdoc, JavadocTag authorTag, JavadocTag versionTag
where jdoc = c.getDoc().getJavadoc() and
authorTag.getTagName() = "Qauthor" and authorTag.getParent() = jdoc and
versionTag.getTagName() = "Qversion" and versionTag.getParent() = jdoc
select c, authorTag.getText(), versionTag.getText()

The JavadocTag has several subclasses representing specific kinds of Javadoc tags:

* ParamTag represents @param tags; member predicate getParamName returns the name of the parameter
being documented.

* ThrowsTag represents @throws tags; member predicate getExceptionName returns the name of the ex-
ception being documented.

* AuthorTag represents @author tags; member predicate getAuthorName returns the name of the author.

6.8.2 Example: Finding spurious @param tags

As an example of using the CodeQL Javadoc API, lets write a query that finds @param tags that refer to a non-
existent parameter.

188 Chapter 6. CodeQL for Java

Learning CodeQL, Release 1.24

For example, consider this program:

class A {
J**
* @param lst a list of strings
*/
public String get(List<String> list) {
return list.get(0);

Here, the @param tag on A.get misspells the name of parameter 1ist as 1st. Our query should be able to find
such cases.

To begin with, we write a query that finds all callables (that is, methods or constructors) and their @param tags:

import java

from Callable c, ParamTag pt
where c.getDoc().getJavadoc() = pt.getParent()
select c, pt

Its now easy to add another conjunct to the where clause, restricting the query to @param tags that refer to a
non-existent parameter: we simply need to require that no parameter of ¢ has the name pt.getParamName ().

import java

from Callable c, ParamTag pt

where c.getDoc().getJavadoc() = pt.getParent() and
not c.getAParameter () .hasName (pt.getParamName())

select pt, "Spurious @param tag."

6.8.3 Example: Finding spurious @throws tags

A related, but somewhat more involved, problem is finding @throws tags that refer to an exception that the
method in question cannot actually throw.

For example, consider this Java program:

import java.io.IOException;

class A {
VAL
* Q@throws IOException thrown if some IO operation fails
* Q@throws RuntimeException thrown if something else goes wrong
*/
public void foo() {
/e

Notice that the Javadoc comment of A.foo documents two thrown exceptions: IOException and
RuntimeException. The former is clearly spurious: A.foo doesnt have a throws IOException clause, and

6.8. Javadoc 189

Learning CodeQL, Release 1.24

therefore cant throw this kind of exception. On the other hand, RuntimeException is an unchecked exception,
so it can be thrown even if there is no explicit throws clause listing it. So our query should flag the @throws tag
for I0Exception, but not the one for RuntimeException.

Remember that the CodeQL library represents @throws tags using class ThrowsTag. This class doesnt provide a
member predicate for determining the exception type that is being documented, so we first need to implement
our own version. A simple version might look like this:

RefType getDocumentedException(ThrowsTag tt) {
result.hasName(tt.getExceptionName())

Similarly, Callable doesnt come with a member predicate for querying all exceptions that the method or con-
structor may possibly throw. We can, however, implement this ourselves by using getAnException to find all
throws clauses of the callable, and then use getType to resolve the corresponding exception types:

predicate mayThrow(Callable c, RefType exn) {
exn.getASupertype*() = c.getAnException().getType()

Note the use of getASupertypex* to find both exceptions declared in a throws clause and their subtypes. For
instance, if a method has a throws I0Exception clause, it may throw MalformedURLException, which is a
subtype of I0Exception.

Now we can write a query for finding all callables ¢ and @throws tags tt such that:
* tt belongs to a Javadoc comment attached to c.

* c cant throw the exception documented by tt.

import java
// Insert the definitions from above

from Callable c, ThrowsTag tt, RefType exn

where c.getDoc().getJavadoc() = tt.getParent+() and
exn = getDocumentedException(tt) and
not mayThrow(c, exn)

select tt, "Spurious Qthrows tag."

See this in the query console on LGTM.com. This finds several results in the LGTM.com demo projects.

Improvements
Currently, there are two problems with this query:

1. getDocumentedException is too liberal: it will return any reference type with the right name, even if its
in a different package and not actually visible in the current compilation unit.

2. mayThrow is too restrictive: it doesnt account for unchecked exceptions, which do not need to be declared.

To see why the former is a problem, consider this program:

190 Chapter 6. CodeQL for Java

https://lgtm.com/query/1258570917227966396/

Learning CodeQL, Release 1.24

class IOException extends Exception {}

class B {
/*% @throws IOEzception an I0 exception */
void bar() throws IOException {}

This program defines its own class I0Exception, which is unrelated to the class java.io.I0Exception in the
standard library: they are in different packages. Our getDocumentedException predicate doesnt check pack-
ages, however, so it will consider the @throws clause to refer to both I0Exception classes, and thus flag the
@param tag as spurious, since B.bar cant actually throw java.io.IOException.

As an example of the second problem, method A.foo from our previous example was annotated with a @throws
RuntimeException tag. Our current version of mayThrow, however, would think that A.foo cant throw a
RuntimeException, and thus flag the tag as spurious.

We can make mayThrow less restrictive by introducing a new class to represent unchecked exceptions, which are
just the subtypes of java.lang.RuntimeException and java.lang.Error:

class UncheckedException extends RefType {
UncheckedException() {
this.getASupertype* () .hasQualifiedName("java.lang", "RuntimeException") or
this.getASupertype* () .hasQualifiedName("java.lang", "Error")

Now we incorporate this new class into our mayThrow predicate:

predicate mayThrow(Callable c, RefType exn) {
exn instanceof UncheckedException or
exn.getASupertype*() = c.getAnException().getType()

Fixing getDocumentedException is more complicated, but we can easily cover three common cases:
1. The @throws tag specifies the fully qualified name of the exception.
2. The @throws tag refers to a type in the same package.
3. The @throws tag refers to a type that is imported by the current compilation unit.

The first case can be covered by changing getDocumentedException to use the qualified name of the @throws
tag. To handle the second and the third case, we can introduce a new predicate visibleIn that checks whether
a reference type is visible in a compilation unit, either by virtue of belonging to the same package or by being
explicitly imported. We then rewrite getDocumentedException as:

predicate visibleIn(CompilationUnit cu, RefType tp) {
cu.getPackage() = tp.getPackage()
or
exists(ImportType it | it.getCompilationUnit() = cu | it.getImportedType() = tp)

RefType getDocumentedException(ThrowsTag tt) {

(continues on next page)

6.8. Javadoc 191

Learning CodeQL, Release 1.24

(continued from previous page)

result.getQualifiedName() = tt.getExceptionName ()
or
(result.hasName (tt.getExceptionName()) and visibleIn(tt.getFile(), result))

See this in the query console on LGTM.com. This finds many fewer, more interesting results in the LGTM.com
demo projects.

Currently, visibleIn only considers single-type imports, but you could extend it with support for other kinds of
imports.

6.8.4 Further reading
* CodeQL queries for Java
¢ Example queries for Java
* CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

6.9 Working with source locations

You can use the location of entities within Java code to look for potential errors. Locations allow you to deduce
the presence, or absence, of white space which, in some cases, may indicate a problem.

6.9.1 About source locations

Java offers a rich set of operators with complex precedence rules, which are sometimes confusing to developers.
For instance, the class ByteBufferCache in the OpenJDK Java compiler (which is a member class of com. sun.
tools.javac.util.BaseFileManager) contains this code for allocating a buffer:

ByteBuffer.allocate(capacity + capacity>>1)

Presumably, the author meant to allocate a buffer that is 1.5 times the size indicated by the variable capacity. In
fact, however, operator + binds tighter than operator >>, so the expression capacity + capacity>>1 is parsed
as (capacity + capacity)>>1, which equals capacity (unless there is an arithmetic overflow).

Note that the source layout gives a fairly clear indication of the intended meaning: there is more white space
around + than around >>, suggesting that the latter is meant to bind more tightly.

Were going to develop a query that finds this kind of suspicious nesting, where the operator of the inner expression
has more white space around it than the operator of the outer expression. This pattern may not necessarily indicate
a bug, but at the very least it makes the code hard to read and prone to misinterpretation.

White space is not directly represented in the CodeQL database, but we can deduce its presence from the loca-
tion information associated with program elements and AST nodes. So, before we write our query, we need an
understanding of source location management in the standard library for Java.

192 Chapter 6. CodeQL for Java

https://lgtm.com/query/8016848987103345329/
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

6.9.2 Location API

For every entity that has a representation in Java source code (including, in particular, program elements and
AST nodes), the standard CodeQL library provides these predicates for accessing source location information:

* getLocation returns a Location object describing the start and end position of the entity.
* getFile returns a File object representing the file containing the entity.

e getTotalNumberOfLines returns the number of lines the source code of the entity spans.
* getNumberOfCommentLines returns the number of comment lines.

* getNumberOfLinesOfCode returns the number of non-comment lines.

For example, lets assume this Java class is defined in the compilation unit SayHello. java:

package pkg;

class SayHello {
public static void main(String[] args) {
System.out.println(
// Display personalized message
"Hello, " + args[0];
)3

Invoking getFile on the expression statement in the body of main returns a File object representing the file
SayHello. java. The statement spans four lines in total (getTotalNumberOfLines), of which one is a comment
line (getNumber0fCommentLines), while three lines contain code (getNumber0fLines0fCode).

Class Location defines member predicates getStartLine, getEndLine, getStartColumn and getEndColumn
to retrieve the line and column number an entity starts and ends at, respectively. Both lines and columns are
counted starting from 1 (not 0), and the end position is inclusive, that is, it is the position of the last character
belonging to the source code of the entity.

In our example, the expression statement starts at line 5, column 3 (the first two characters on the line are tabs,
which each count as one character), and it ends at line 8, column 4.

Class File defines these member predicates:
* getAbsolutePath returns the fully qualified name of the file.
* getRelativePath returns the path of the file relative to the base directory of the source code.
* getExtension returns the extension of the file.
* getStem returns the base name of the file, without its extension.

In our example, assume file A. java is located in directory /home/testuser/code/pkg, where /home/testuser/
code is the base directory of the program being analyzed. Then, a File object for A. java returns:

* getAbsolutePath is /home/testuser/code/pkg/A. java.
* getRelativePath is pkg/A. java.
* getExtension is java.

* getStemis A.

6.9. Working with source locations 193

Learning CodeQL, Release 1.24

6.9.3 Determining white space around an operator

Lets start by considering how to write a predicate that computes the total amount of white space surrounding the
operator of a given binary expression. If rcol is the start column of the expressions right operand and 1col is
the end column of its left operand, then rcol - (lcol+1) gives us the total number of characters in between
the two operands (note that we have to use 1col+1 instead of 1col because end positions are inclusive).

This number includes the length of the operator itself, which we need to subtract out. For this, we can use
predicate getOp, which returns the operator string, surrounded by one white space on either side. Overall, the
expression for computing the amount of white space around the operator of a binary expression expr is:

rcol - (lcol+l) - (expr.getOp().length()-2)

Clearly, however, this only works if the entire expression is on a single line, which we can check using predicate
getTotalNumberOfLines introduced above. We are now in a position to define our predicate for computing
white space around operators:

int operatorWS(BinaryExpr expr) {
exists(int lcol, int rcol |
expr.getNumberOfLines0fCode() = 1 and
lcol = expr.getLeftOperand().getLocation().getEndColumn() and
rcol = expr.getRightOperand().getLocation().getStartColumn() and
result = rcol - (lcol+l) - (expr.getOp().length()-2)

Notice that we use an exists to introduce our temporary variables 1col and rcol. You could write the predicate
without them by just inlining 1col and rcol into their use, at some cost in readability.

6.9.4 Find suspicious nesting

Heres a first version of our query:

import java
// Insert predicate defined above

from BinaryExpr outer, BinaryExpr inner,
int wsouter, int wsinner

where inner = outer.getAChildExpr() and
wsinner = operatorWS(inner) and wsouter = operatorWS(outer) and
wsinner > wsouter

select outer, "Whitespace around nested operators contradicts precedence."

See this in the query console on LGTM.com. This query is likely to find results on most projects.

The first conjunct of the where clause restricts inner to be an operand of outer, the second conjunct binds
wsinner and wsouter, while the last conjunct selects the suspicious cases.

At first, we might be tempted to write inner = outer.getAnOperand() in the first conjunct. This, however,
wouldnt be quite correct: getAnOperand strips off any surrounding parentheses from its result, which is often
useful, but not what we want here: if there are parentheses around the inner expression, then the programmer
probably knew what they were doing, and the query should not flag this expression.

194 Chapter 6. CodeQL for Java

https://lgtm.com/query/8141155897270480914/

Learning CodeQL, Release 1.24

Improving the query

If we run this initial query, we might notice some false positives arising from asymmetric white space. For instance,
the following expression is flagged as suspicious, although it is unlikely to cause confusion in practice:

i< start + 100

Note that our predicate operatorWS computes the total amount of white space around the operator, which, in this
case, is one for the < and two for the +. Ideally, we would like to exclude cases where the amount of white space
before and after the operator are not the same. Currently, CodeQL databases dont record enough information to
figure this out, but as an approximation we could require that the total number of white space characters is even:

import java
// Insert predicate definition from above

from BinaryExpr outer, BinaryExpr inner,
int wsouter, int wsinner
where inner = outer.getAChildExpr() and
wsinner = operatorWS(inner) and wsouter = operatorWS(outer) and
wsinner 7 2 = O and wsouter , 2 = 0 and
wsinner > wsouter
select outer, "Whitespace around nested operators contradicts precedence."

See this in the query console on LGTM.com. Any results will be refined by our changes to the query.

Another source of false positives are associative operators: in an expression of the form x + y+z, the first plus
is syntactically nested inside the second, since + in Java associates to the left; hence the expression is flagged
as suspicious. But since + is associative to begin with, it does not matter which way around the operators are
nested, so this is a false positive. To exclude these cases, let us define a new class identifying binary expressions
with an associative operator:

class AssociativeOperator extends BinaryExpr {
AssociativeOperator() {
this instanceof AddExpr or
this instanceof MulExpr or
this instanceof BitwiseExpr or
this instanceof AndLogicalExpr or
this instanceof OrLogicalExpr

Now we can extend our query to discard results where the outer and the inner expression both have the same,
associative operator:

import java
// Insert predicate and class definitions from above
from BinaryExpr inner, BinaryExpr outer, int wsouter, int wsinner

where inner = outer.getAChildExpr() and
not (inner.getOp() = outer.getOp() and outer instanceof AssociativeOperator) and

(continues on next page)

6.9. Working with source locations 195

https://lgtm.com/query/3151720037708691205/

Learning CodeQL, Release 1.24

(continued from previous page)

wsinner = operatorWS(inner) and wsouter = operatorWS(outer) and
wsinner 7 2 = O and wsouter % 2 = O and
wsinner > wsouter

select outer, "Whitespace around nested operators contradicts precedence."

See this in the query console on LGTM.com.

Notice that we again use getOp, this time to determine whether two binary expressions have the same operator.
Running our improved query now finds the Java standard library bug described in the Overview. It also flags up
the following suspicious code in Hadoop HBase:

KEY_SLAVE = tmp[i+1 % 2 1;

Whitespace suggests that the programmer meant to toggle i between zero and one, but in fact the expression is
parsed as i + (1%2), which is the same as i + 1, so i is simply incremented.

6.9.5 Further reading
* CodeQL queries for Java

* Example queries for Java

CodeQL library reference for Java
* QL language reference

* CodeQL tools

6.10 Abstract syntax tree classes for working with Java programs

CodeQL has a large selection of classes for representing the abstract syntax tree of Java programs.

The abstract syntax tree (AST) represents the syntactic structure of a program. Nodes on the AST represent
elements such as statements and expressions.

6.10.1 Statement classes

This table lists all subclasses of Stmt.

196 Chapter 6. CodeQL for Java

https://lgtm.com/query/5714614966569401039/
https://hbase.apache.org/
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html

Learning CodeQL, Release 1.24

assert Expr ;

Statement syntax CodeQL class Superclasses Remarks

; EmptyStmt

Expr ; ExprStmt

{Stmt ... } Block

if (Expr) Stmt else Stmt IfStmt ConditionalStmt

if (Expr) Stmt

while (Expr) Stmt WhileStmt ConditionalStmt,
LoopStmt

do Stmt while (Expr) DoStmt ConditionalStmt,
LoopStmt

for (Expr ; Expr ; Expr) | ForStmt ConditionalStmt,

Stmt LoopStmt

for (VarAccess : Expr) Stmt | EnhancedForStmt LoopStmt

switch (Expr) { Switch- | SwitchStmt

Case ... }

try { Stmt ... } finally | TryStmt

{Stmt ... }

return Expr ; ReturnStmt

return ;

throw Expr ; ThrowStmt

break ; BreakStmt JumpStmt

break label ;

continue ; ContinueStmt JumpStmt

continue label ;

label : Stmt LabeledStmt

synchronized (Expr) Stmt | SynchronizedStmt

assert Expr : Expr ; AssertStmt

TypeAccess name ;

LocalVariableDeclStmt

class name {Member... } | LocalClassDeclStmt
this (Expr, ...) ; ThisConstructorInvo-
cationStmt
super (Expr, ...) ; SuperConstructorInvo-
cationStmt
catch (TypeAccess name) | CatchClause can only occur as child of a
{Stmt ... } TryStmt
case Literal : Stmt ... ConstCase can only occur as child of a
SwitchStmt
default : Stmt ... DefaultCase can only occur as child of a

SwitchStmt

6.10.2 Expression classes

There are many expression classes, so we present them by category. All classes in this section are subclasses of

Expr.

6.10. Abstract syntax tree classes for working with Java programs

197

https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar EmptyStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ExprStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Block.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar IfStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ConditionalStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar WhileStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ConditionalStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar DoStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ConditionalStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ForStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ConditionalStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar EnhancedForStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SwitchCase.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SwitchCase.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar TryStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ReturnStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ThrowStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar BreakStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar JumpStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ContinueStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar JumpStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar LabeledStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SynchronizedStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar AssertStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar TypeAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar LocalVariableDeclStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Member.qll/type.Member\protect \T1\textdollar Member.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar LocalClassDeclStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ThisConstructorInvocationStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ThisConstructorInvocationStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SuperConstructorInvocationStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SuperConstructorInvocationStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar TypeAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar CatchClause.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar TryStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Literal.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar ConstCase.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar DefaultCase.html
https://help.semmle.com/qldoc/java/semmle/code/java/Statement.qll/type.Statement\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html

Learning CodeQL, Release 1.24

Literals

All classes in this subsection are subclasses of Literal.

Expression syntax example | CodeQL class
true BooleanlLiteral
23 IntegerLiteral
231 LongLiteral
4.2f FloatingPointLiteral
4.2 DoubleLiteral
'a' CharacterLiteral
"Hello" StringLiteral
null NullLiteral
Unary expressions
All classes in this subsection are subclasses of UnaryExpr.
Expression syntax | CodeQL class | Superclasses Remarks
Expr++ PostIncExpr UnaryAssignExpr
Expr-- PostDecExpr UnaryAssignExpr
++Expr PrelncExpr UnaryAssignExpr
--Expr PreDecExpr UnaryAssignExpr
~Expr BitNotExpr BitwiseExpr see below for other subclasses of BitwiseExpr
-Expr MinusExpr
+Expr PlusExpr
'Expr LogNotExpr LogicExpr see below for other subclasses of LogicExpr

Binary expressions

All classes in this subsection are subclasses of BinaryExpr.

198

Chapter 6. CodeQL for Java

https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Literal.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BooleanLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar IntegerLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LongLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar FloatingPointLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar DoubleLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar CharacterLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar NullLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar UnaryExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar PostIncExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar UnaryAssignExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar PostDecExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar UnaryAssignExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar PreIncExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar UnaryAssignExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar PreDecExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar UnaryAssignExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BitNotExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar MinusExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar PlusExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LogNotExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LogicExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LogicExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BinaryExpr.html

Learning CodeQL, Release 1.24

Expression syntax | CodeQL class Superclasses
Expr * Expr MulExpr

Expr / Expr DivExpr

Expr % Expr RemExpr

Expr + Expr AddExpr

Expr - Expr SubExpr

Expr << Expr LShiftExpr

Expr >> Expr RShiftExpr

Expr >>> Expr URShiftExpr

Expr && Expr AndLogicalExpr | LogicExpr

Expr | | Expr OrLogicalExpr LogicExpr

Expr < Expr LTExpr ComparisonExpr
Expr > Expr GTExpr ComparisonExpr
Expr <= Expr LEExpr ComparisonExpr
Expr >= Expr GEExpr ComparisonExpr
Expr == Expr EQExpr EqualityTest
Expr !'= Expr NEExpr EqualityTest
Expr & Expr AndBitwiseExpr | BitwiseExpr
Expr | Expr OrBitwiseExpr BitwiseExpr
Expr = Expr XorBitwiseExpr | BitwiseExpr

Assignment expressions

All classes in this table are subclasses of Assignment.

Expression syntax | CodeQL class Superclasses
Expr = Expr AssignExpr

Expr += Expr AssignAddExpr AssignOp
Expr -= Expr AssignSubExpr AssignOp
Expr *= Expr AssignMulExpr AssignOp
Expr /= Expr AssignDivExpr AssignOp
Expr %= Expr AssignRemExpr AssignOp
Expr &= Expr AssignAndExpr AssignOp
Expr |= Expr AssignOrExpr AssignOp
Expr "= Expr AssignXorExpr AssignOp
Expr <<= Expr AssignLShiftExpr AssignOp
Expr >>= Expr AssignRShiftExpr AssignOp
Expr >>>= Expr AssignURShiftExpr | AssignOp

6.10. Abstract syntax tree classes for working with Java programs 199

https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar MulExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar DivExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar RemExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AddExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar SubExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LShiftExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar RShiftExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar URShiftExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AndLogicalExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LogicExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar OrLogicalExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LogicExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LTExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ComparisonExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar GTExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ComparisonExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar LEExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ComparisonExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar GEExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ComparisonExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar EQExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar EqualityTest.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar NEExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar EqualityTest.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AndBitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar OrBitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar XorBitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar BitwiseExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignAddExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignSubExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignMulExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignDivExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignRemExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignAndExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOrExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignXorExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignLShiftExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignRShiftExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignURShiftExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar AssignOp.html

Learning CodeQL, Release 1.24

Accesses

Expression syntax examples | CodeQL class
this ThisAccess
Outer.this

super SuperAccess
Outer.super

X VarAccess

e.f

ali] ArrayAccess
£(...) MethodAccess
e.m(...)

String TypeAccess
java.lang.String

? extends Number WildcardTypeAccess
? super Double

A VarAccess that refers to a field is a FieldAccess.

Miscellaneous

Expression syntax exam- | CodeQL class Remarks
ples
(int) £ CastExpr
(23 + 42) ParExpr
o instanceof String | InstanceOfExpr
Expr ? Expr : Expr ConditionalExpr
String. class TypelLiteral
new A() ClassInstance-
Expr
new String[3][2] ArrayCreationExpf
new int[] { 23, 42
}
{23, 42 } ArrayInit can only appear as an initializer or as a child of an ArrayCre-
ationExpr
@Annot (key=val) Annotation

6.10.3 Further reading

* CodeQL queries for Java

* Example queries for Java

* CodeQL library reference for Java

* QL language reference

* CodeQL tools

* Basic query for Java code: Learn to write and run a simple CodeQL query using LGTM.

200

Chapter 6. CodeQL for Java

https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ThisAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar SuperAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ArrayAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar MethodAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar TypeAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar WildcardTypeAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar FieldAccess.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar CastExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ParExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar InstanceOfExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ConditionalExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar TypeLiteral.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ClassInstanceExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ClassInstanceExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ArrayCreationExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ArrayInit.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ArrayCreationExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Expr.qll/type.Expr\protect \T1\textdollar ArrayCreationExpr.html
https://help.semmle.com/qldoc/java/semmle/code/java/Annotation.qll/type.Annotation\protect \T1\textdollar Annotation.html
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

* CodeQL library for Java: When analyzing Java code, you can use the large collection of classes in the CodeQL
library for Java.

* Analyzing data flow in Java: You can use CodeQL to track the flow of data through a Java program to its
use.

e Java types: You can use CodeQL to find out information about data types used in Java code. This allows
you to write queries to identify specific type-related issues.

e Overflow-prone comparisons in Java: You can use CodeQL to check for comparisons in Java code where one
side of the comparison is prone to overflow.

* Navigating the call graph: CodeQL has classes for identifying code that calls other code, and code that can
be called from elsewhere. This allows you to find, for example, methods that are never used.

* Annotations in Java: CodeQL databases of Java projects contain information about all annotations attached
to program elements.

e Javadoc: You can use CodeQL to find errors in Javadoc comments in Java code.

* Working with source locations: You can use the location of entities within Java code to look for potential
errors. Locations allow you to deduce the presence, or absence, of white space which, in some cases, may
indicate a problem.

* Abstract syntax tree classes for working with Java programs: CodeQL has a large selection of classes for
representing the abstract syntax tree of Java programs.

6.10. Abstract syntax tree classes for working with Java programs 201

Learning CodeQL, Release 1.24

202 Chapter 6. CodeQL for Java

CHAPTER

SEVEN

CODEQL FOR JAVASCRIPT

Experiment and learn how to write effective and efficient queries for CodeQL databases generated from JavaScript
codebases.

7.1 Basic query for JavaScript code

Learn to write and run a simple CodeQL query using LGTM.

7.1.1 About the query

In JavaScript, any expression can be turned into an expression statement. While this is sometimes convenient, it
can be dangerous. For example, imagine a programmer wants to assign a new value to a variable x by means of
an assignment x = 42. However, they accidentally type two equals signs, producing the comparison statement
x == 42. This is valid JavaScript, so no error is generated. The statement simply compares x to 42, and then
discards the result of the comparison.

The query you will run finds instances of this problem. The query searches for expressions e that are purethat is,
their evaluation does not lead to any side effectsbut appear as an expression statement.

7.1.2 Running the query
1. In the main search box on LGTM.com, search for the project you want to query. For tips, see Searching.
2. Click the project in the search results.
3. Click Query this project.
This opens the query console. (For information about using this, see Using the query console.)
Note

Alternatively, you can go straight to the query console by clicking Query console (at the top of
any page), selecting JavaScript from the Language drop-down list, then choosing one or more
projects to query from those displayed in the Project drop-down list.

4. Copy the following query into the text box in the query console:

import javascript

from Expr e
where e.isPure() and

(continues on next page)

203

https://lgtm.com/help/lgtm/searching
https://lgtm.com/help/lgtm/using-query-console

Learning CodeQL, Release 1.24

(continued from previous page)

e.getParent() instanceof ExprStmt
select e, "This expression has no effect."

LGTM checks whether your query compiles and, if all is well, the Run button changes to green to indicate
that you can go ahead and run the query.

5. Click Run.

The name of the project you are querying, and the ID of the most recently analyzed commit to the project,
are listed below the query box. To the right of this is an icon that indicates the progress of the query

operation:
Progress: 22%
[

Note
Your query is always run against the most recently analyzed commit to the selected project.

The query will take a few moments to return results. When the query completes, the results are displayed
below the project name. The query results are listed in two columns, corresponding to the two expressions
in the select clause of the query. The first column corresponds to the expression e and is linked to the
location in the source code of the project where e occurs. The second column is the alert message.

Example query results
Note

An ellipsis () at the bottom of the table indicates that the entire list is not displayedclick it to
show more results.

6. If any matching code is found, click one of the links in the e column to view the expression in the code
viewer.

The matching statement is highlighted with a yellow background in the code viewer. If any code in the file
also matches a query from the standard query library for that language, you will see a red alert message at
the appropriate point within the code.

About the query structure

After the initial import statement, this simple query comprises three parts that serve similar purposes to the
FROM, WHERE, and SELECT parts of an SQL query.

204 Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/5137013631828816943/

Learning CodeQL, Release 1.24

Query part Purpose Details
import Imports the standard CodeQL libraries for | Every query begins with one or more
javascript JavaScript. import statements.

from Expr e

Defines the variables for the query. Declarations
are of the form: <type> <variable name>

e is declared as a variable that ranges
over expressions.

where e.
isPure() and
e.getParent ()

Defines a condition on the variables.

e.isPure(): The expression is side-
effect-free.
e.getParent() instanceof

instanceof ExprStmt: The parent of the ex-
ExprStmt pression is an expression statement.
select Defines what to report for each match. Report the expression with a string
e, "This select statements for queries that are used to | that explains the problem.
expression find instances of poor coding practice are al-

has no ways in the form: select <program element>,

effect." "<alert message>"

7.1.3 Extend the query

Query writing is an inherently iterative process. You write a simple query and then, when you run it, you discover
examples that you had not previously considered, or opportunities for improvement.

Remove false positive results

Browsing the results of our basic query shows that it could be improved. Among the results you are likely to
find use strict directives. These are interpreted specially by modern browsers with strict mode support and so
these expressions do have an effect.

To remove directives from the results:

1. Extend the where clause to include the following extra condition:

and not e.getParent() instanceof Directive

The where clause is now:

where e.isPure() and
e.getParent() instanceof ExprStmt and
not e.getParent() instanceof Directive

2. Click Run.
There are now fewer results as use strict directives are no longer reported.

The improved query finds several results on the example project including this result:

point.bias == -1;

As written, this statement compares point.bias against -1 and then discards the result. Most likely, it was
instead meant to be an assignment point.bias = -1.

7.1. Basic query for JavaScript code 205

https://lgtm.com/projects/g/ajaxorg/ace/rev/ad50673d7137c09d1a5a6f0ef83633a149f9e3d1/files/lib/ace/keyboard/vim.js#L320

Learning CodeQL, Release 1.24

7.1.4 Further reading
* CodeQL queries for JavaScript
e Example queries for JavaScript
* CodeQL library reference for JavaScript
* QL language reference

¢ CodeQL tools

7.2 CodeQL library for JavaScript

When youre analyzing a JavaScript program, you can make use of the large collection of classes in the CodeQL
library for JavaScript.

7.2.1 Overview

There is an extensive CodeQL library for analyzing JavaScript code. The classes in this library present the data
from a CodeQL database in an object-oriented form and provide abstractions and predicates to help you with
common analysis tasks.

The library is implemented as a set of QL modules, that is, files with the extension .q11. The module javascript.
gl1 imports most other standard library modules, so you can include the complete library by beginning your query
with:

import javascript

The rest of this tutorial briefly summarizes the most important classes and predicates provided by this library,
including references to the detailed API documentation where applicable.

7.2.2 Introducing the library
The CodeQL library for JavaScript presents information about JavaScript source code at different levels:
* Textual classes that represent source code as unstructured text files
* Lexical classes that represent source code as a series of tokens and comments
* Syntactic classes that represent source code as an abstract syntax tree
* Name binding classes that represent scopes and variables
* Control flow classes that represent the flow of control during execution
* Data flow classes that you can use to reason about data flow in JavaScript source code
* Type inference classes that you can use to approximate types for JavaScript expressions and variables
* Call graph classes that represent the caller-callee relationship between functions

* Inter-procedural data flow classes that you can use to define inter-procedural data flow and taint tracking
analyses

* Frameworks classes that represent source code entities that have a special meaning to JavaScript tools and
frameworks

206 Chapter 7. CodeQL for JavaScript

https://github.com/github/codeql/tree/master/javascript/ql/src
https://github.com/github/codeql/tree/master/javascript/ql/examples
https://help.semmle.com/qldoc/javascript/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/javascript/

Learning CodeQL, Release 1.24

Note that representations above the textual level (for example the lexical representation or the flow graphs) are
only available for JavaScript code that does not contain fatal syntax errors. For code with such errors, the only
information available is at the textual level, as well as information about the errors themselves.

Additionally, there is library support for working with HTML documents, JSON, and YAML data, JSDoc comments,
and regular expressions.

Textual level

At its most basic level, a JavaScript code base can simply be viewed as a collection of files organized into folders,
where each file is composed of zero or more lines of text.

Note that the textual content of a program is not included in the CodeQL database unless you specifically request
it during extraction. In particular, databases on LGTM (also known as snapshots) do not normally include textual
information.

Files and folders

In the CodeQL libraries, files are represented as entities of class File, and folders as entities of class Folder, both
of which are subclasses of class Container.

Class Container provides the following member predicates:
e Container.getParentContainer() returns the parent folder of the file or folder.
* Container.getAFile() returns a file within the folder.
* Container.getAFolder () returns a folder nested within the folder.

Note that while getAFile and getAFolder are declared on class Container, they currently only have results for
Folders.

Both files and folders have paths, which can be accessed by the predicate Container.getAbsolutePath(). For
example, if represents a file with the path /home/user/project/src/index. js, then f.getAbsolutePath()
evaluates to the string "/home/user/project/src/index.js", while f.getParentContainer().
getAbsolutePath() returns "/home/user/project/src".

These paths are absolute file system paths. If you want to obtain the path of a file relative to the source location
in the CodeQL database, use Container.getRelativePath() instead. Note, however, that a database may
contain files that are not located underneath the source location; for such files, getRelativePath() will not
return anything.

The following member predicates of class Container provide more information about the name of a file or folder:

* Container.getBaseName() returns the base name of a file or folder, not including its parent folder, but
including its extension. In the above example, f . getBaseName () would return the string "index. js".

* Container.getStem() is similar to Container.getBaseName (), but it does not include the file extension;
so f.getStem() returns "index".

* Container.getExtension() returns the file extension, not including the dot; so f.getExtension() re-
turns "js".

For example, the following query computes, for each folder, the number of JavaScript files (that is, files with
extension js) contained in the folder:

7.2. CodeQL library for JavaScript 207

https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar File.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Folder.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Container.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Container.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Container.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Folder.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Container.html

Learning CodeQL, Release 1.24

import javascript

from Folder d
select d.getRelativePath(), count(File f | f = d.getAFile() and f.getExtension() = "js")

See this in the query console on LGTM.com. When you run the query on most projects, the results include folders
that contain files with a js extension and folders that dont.

Locations

Most entities in a CodeQL database have an associated source location. Locations are identified by four pieces
of information: a file, a start line, a start column, an end line, and an end column. Line and column counts are
1-based (so the first character of a file is at line 1, column 1), and the end position is inclusive.

All entities associated with a source location belong to the class Locatable. The location itself is modeled by the
class Location and can be accessed through the member predicate Locatable.getLocation(). The Location
class provides the following member predicates:

* Location.getFile(), Location.getStartLine(), Location.getStartColumn(), Location.
getEndLine (), Location.getEndColumn () return detailed information about the location.

* Location.getNumLines () returns the number of (whole or partial) lines covered by the location.

e Location.startsBefore(Location) and Location.endsAfter (Location) determine whether one lo-
cation starts before or ends after another location.

* Location.contains(Location) indicates whether one location completely contains another location; 11.
contains(12) holds if, and only if, 11.startsBefore(12) and 11.endsAfter (12).

Lines

Lines of text in files are represented by the class Line. This class offers the following member predicates:
* Line.getText () returns the text of the line, excluding any terminating newline characters.

* Line.getTerminator () returns the terminator character(s) of the line. The last line in a file may not have
any terminator characters, in which case this predicate does not return anything; otherwise it returns either
the two-character string "\r\n" (carriage-return followed by newline), or one of the one-character strings
"\n" (newline), "\r" (carriage-return), "\u2028" (Unicode character LINE SEPARATOR), "\u2029" (Uni-
code character PARAGRAPH SEPARATOR).

Note that, as mentioned above, the textual representation of the program is not included in the CodeQL database
by default.

Lexical level

A slightly more structured view of a JavaScript program is provided by the classes Token and Comment, which

represent tokens and comments, respectively.

Tokens

The most important member predicates of class Token are as follows:

* Token.getValue() returns the source text of the token.

208 Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/1506075865985/
https://help.semmle.com/qldoc/javascript/semmle/javascript/Locations.qll/type.Locations\protect \T1\textdollar Locatable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Locations.qll/type.Locations\protect \T1\textdollar Location.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Locations.qll/type.Locations\protect \T1\textdollar Location.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Lines.qll/type.Lines\protect \T1\textdollar Line.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar Token.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar Comment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar Token.html

Learning CodeQL, Release 1.24

* Token.getIndex () returns the index of the token within its enclosing script.

* Token.getNextToken() and Token.getPreviousToken() navigate between tokens.
The Token class has nine subclasses, each representing a particular kind of token:

* EOFToken: a marker token representing the end of a script

* NullLiteralToken, BooleanLiteralToken, NumericLiteralToken, StringLiteralToken and RegularExpressionTo-
ken: different kinds of literals

¢ IdentifierToken and KeywordToken: identifiers and keywords (including reserved words) respectively
* PunctuatorToken: operators and other punctuation symbols

As an example of a query operating entirely on the lexical level, consider the following query, which finds consec-
utive comma tokens arising from an omitted element in an array expression:

import javascript

class CommaToken extends PunctuatorToken {
CommaToken() {
getValue() = ","

from CommaToken comma
where comma.getNextToken() instanceof CommaToken
select comma, "Omitted array elements are bad style."

See this in the query console on LGTM.com. If the query returns no results, this pattern isnt used in the projects
that you analyzed.

You can use predicate Locatable.getFirstToken() and Locatable.getLastToken() to access the first and
last token (if any) belonging to an element with a source location.

Comments

The class Comment and its subclasses represent the different kinds of comments that can occur in JavaScript
programs:

e Comment: any comment
- LineComment: a single-line comment terminated by an end-of-line character
SlashSlashComment: a plain JavaScript single-line comment starting with //
HtmlLineComment: a (non-standard) HTML comment
- HtmlCommentStart: an HTML comment starting with <!--
- HtmlCommentEnd: an HTML comment ending with —->
* BlockComment: a block comment potentially spanning multiple lines
— SlashStarComment: a plain JavaScript block comment surrounded with /*. . .*/
— DocComment: a documentation block comment surrounded with /**. . .*/

The most important member predicates are as follows:

7.2. CodeQL library for JavaScript 209

https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar Token.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar EOFToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar NullLiteralToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar BooleanLiteralToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar NumericLiteralToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar StringLiteralToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar RegularExpressionToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar RegularExpressionToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar IdentifierToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar KeywordToken.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar PunctuatorToken.html
https://lgtm.com/query/659662177/
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar Comment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar Comment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar LineComment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar SlashSlashComment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar HtmlLineComment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar HtmlCommentStart.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar HtmlCommentEnd.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar BlockComment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar SlashStarComment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar DocComment.html

Learning CodeQL, Release 1.24

* Comment.getText () returns the source text of the comment, not including delimiters.
e Comment.getLine (i) returns the ith line of text within the comment (0-based).
* Comment.getNumLines () returns the number of lines in the comment.

* Comment.getNextToken() returns the token immediately following a comment. Note that such a token
always exists: if a comment appears at the end of a file, its following token is an EOFToken.

As an example of a query using only lexical information, consider the following query for finding HTML comments,
which are not a standard ECMAScript feature and should be avoided:

import javascript

from HtmlLineComment c

select c, "Do not use HTML comments."

See this in the query console on LGTM.com. When we ran this query on the mogilla/pdf;js project in LGTM.com,
we found three HTML comments.

Syntactic level

The majority of classes in the JavaScript library is concerned with representing a JavaScript program as a collection
of abstract syntax trees (ASTS).

The class ASTNode contains all entities representing nodes in the abstract syntax trees and defines generic tree
traversal predicates:

* ASTNode.getChild(i): returns the ith child of this AST node.

* ASTNode.getAChild (): returns any child of this AST node.

* ASTNode.getParent (): returns the parent node of this AST node, if any.
Note

These predicates should only be used to perform generic AST traversal. To access children of specific
AST node types, the specialized predicates introduced below should be used instead. In particular,
queries should not rely on the numeric indices of child nodes relative to their parent nodes: these are
considered an implementation detail that may change between versions of the library.

Top-levels

From a syntactic point of view, each JavaScript program is composed of one or more top-level code blocks (or
top-levels for short), which are blocks of JavaScript code that do not belong to a larger code block. Top-levels are
represented by the class TopLevel and its subclasses:

e TopLevel
— Script: a stand-alone file or HTML <script> element
ExternalScript: a stand-alone JavaScript file
InlineScript: code embedded inline in an HTML <script> tag
— CodelnAttribute: a code block originating from an HTML attribute value

EventHandlerCode: code from an event handler attribute such as onload

210 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Tokens.qll/type.Tokens\protect \T1\textdollar EOFToken.html
https://lgtm.com/query/686330023/
http://en.wikipedia.org/wiki/Abstract_syntax_tree
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar ASTNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar TopLevel.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar TopLevel.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar Script.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar ExternalScript.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar InlineScript.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar CodeInAttribute.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar EventHandlerCode.html

Learning CodeQL, Release 1.24

JavaScriptURL: code from a URL with the javascript: scheme

— Externs: a JavaScript file containing externs definitions

Every TopLevel class is contained in a File class, but a single File may contain more than one TopLevel. To go from
a TopLevel tl to its File, use t1.getFile(); conversely, for a File f, predicate f.getATopLevel() returns
a top-level contained in f. For every AST node, predicate ASTNode.getTopLevel() can be used to find the
top-level it belongs to.

The TopLevel class additionally provides the following member predicates:

* TopLevel.getNumberOfLines () returns the total number of lines (including code, comments and whites-
pace) in the top-level.

TopLevel.getNumberOfLines0fCode () returns the number of lines of code, that is, lines that contain at
least one token.

TopLevel.getNumberOfLines0fComments () returns the number of lines containing or belonging to a
comment.

TopLevel.isMinified () determines whether the top-level contains minified code, using a heuristic based
on the average number of statements per line.

Note

By default, LGTM filters out alerts in minified top-levels, since they are often hard to interpret. When
writing your own queries in the LGTM query console, this filtering is not done automatically, so you
may want to explicitly add a condition of the form and not e.getTopLevel().isMinified() or
similar to your query to exclude results in minified code.

Statements and expressions

The most important subclasses of ASTNode besides TopLevel are Stmt and Expr, which, together with their sub-
classes, represent statements and expressions, respectively. This section briefly discusses some of the more impor-
tant classes and predicates. For a full reference of all the subclasses of Stmt and Expr and their API, see Stmt.qll
and Expr.qll.

e Stmt: use Stmt.getContainer () to access the innermost function or top-level in which the statement is
contained.

— ControlStmt: a statement that controls the execution of other statements, that is, a conditional, loop,
try or with statement; use ControlStmt.getAControlledStmt () to access the statements that it
controls.

IfStmt: an if statement; use IfStmt.getCondition(), IfStmt.getThen() and IfStmt.
getElse () to access its condition expression, then branch and else branch, respectively.

LoopStmt: a loop; use Loop.getBody () and Loop.getTest () to access its body and its test
expression, respectively.

- WhileStmt, DoWhileStmt: a while or do-while loop, respectively.

- ForStmt: a for statement; use ForStmt.getInit () and ForStmt.getUpdate () to access
the init and update expressions, respectively.

- EnhancedForLoop: a for-in or for-of loop; use EnhancedForLoop.getIterator() to
access the loop iterator (which may be a expression or variable declaration), and
EnhancedForLoop.getIterationDomain () to access the expression being iterated over.

7.2. CodeQL library for JavaScript 211

https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar JavaScriptURL.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar Externs.html
https://developers.google.com/closure/compiler/docs/api-tutorial3#externs
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar TopLevel.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar File.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar File.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar TopLevel.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar File.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar TopLevel.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar ASTNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar TopLevel.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/module.Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/module.Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar IfStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar WhileStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DoWhileStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ForStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar EnhancedForLoop.html

Learning CodeQL, Release 1.24

¢ Expr:

Expr.

- ForInStmt, ForOfStmt: a for-in or for-of loop, respectively.

WithStmt: a with statement; use WithStmt.getExpr () and WithStmt.getBody () to access
the controlling expression and the body of the with statement, respectively.

SwitchStmt: a switch statement; use SwitchStmt.getExpr() to access the expression on
which the statement switches; use SwitchStmt.getCase(int) and SwitchStmt.getACase ()
to access individual switch cases; each case is modeled by an entity of class Case, whose member
predicates Case.getExpr() and Case.getBodyStmt (int) provide access to the expression
checked by the switch case (which is undefined for default), and its body.

TryStmt: a try statement; use TryStmt.getBody(), TryStmt.getCatchClause() and
TryStmt.getFinally to access its body, catch clause and finally block, respectively.

BlockStmt: a block of statements; use BlockStmt . getStmt (int) to access the individual statements
in the block.

ExprStmt: an expression statement; use ExprStmt . getExpr () to access the expression itself.

JumpStmt: a statement that disrupts structured control flow, that is, one of break, continue, return
and throw; use predicate JumpStmt . getTarget () to determine the target of the jump, which is either
a statement or (for return and uncaught throw statements) the enclosing function.

BreakStmt: a break statement; use BreakStmt . getLabel () to access its (optional) target label.

ContinueStmt: a continue statement; use ContinueStmt.getLabel () to access its (optional)
target label.

ReturnStmt: a return statement; use ReturnStmt.getExpr() to access its (optional) result
expression.

ThrowStmt: a throw statement; use ThrowStmt . getExpr () to access its thrown expression.
FunctionDeclStmt: a function declaration statement; see below for available member predicates.
ClassDeclStmt: a class declaration statement; see below for available member predicates.

DeclStmt: a declaration statement containing one or more declarators which can be accessed by
predicate DeclStmt . getDeclarator(int).

VarDeclStmt, ConstDeclStmt, LetStmt: a var, const or let declaration statement.

use Expr.getEnclosingStmt () to obtain the innermost statement to which this expression belongs;
isPure () determines whether the expression is side-effect-free.

Identifier: an identifier; use Identifier.getName () to obtain its name.

Literal: a literal value; use Literal.getValue() to obtain a string representation of its value, and
Literal.getRawValue () to obtain its raw source text (including surrounding quotes for string lit-
erals).

NullLiteral, BooleanLiteral, NumberLiteral, StringLiteral, RegExpLiteral: different kinds of lit-
erals.

ThisExpr: a this expression.
SuperExpr: a super expression.

ArrayExpr: an array expression; use ArrayExpr.getElement (i) to obtain the ith element expres-
sion, and ArrayExpr.elementIsOmitted(i) to check whether the ith element is omitted.

212

Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ForInStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ForOfStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar WithStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Case.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar TryStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ExprStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar JumpStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar BreakStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ContinueStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ReturnStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ThrowStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar FunctionDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar VarDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ConstDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LetStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Literal.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NullLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BooleanLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NumberLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar RegExpLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ThisExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar SuperExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrayExpr.html

Learning CodeQL, Release 1.24

- ObjectExpr: an object expression; use ObjectExpr.getProperty (i) to obtain the ith property in
the object expression; properties are modeled by class Property, which is described in more detail
below.

— FunctionExpr: a function expression; see below for available member predicates.

— ArrowFunctionExpr: an ECMAScript 2015-style arrow function expression; see below for available
member predicates.

— ClassExpr: a class expression; see below for available member predicates.

— ParExpr: a parenthesized expression; use ParExpr.getExpression() to obtain the operand expres-
sion; for any expression, Expr.stripParens() can be used to recursively strip off any parentheses

- SeqExpr: a sequence of two or more expressions connected by the comma operator; use SeqExpr.
getOperand (i) to obtain the ith sub-expression.

— ConditionalExpr: a ternary conditional expression; member predicates ConditionalExpr.
getCondition(), ConditionalExpr.getConsequent () and ConditionalExpr.getAlternate ()
provide access to the condition expression, the then expression and the else expression, respectively.

— InvokeExpr: a function call or a new expression; use InvokeExpr.getCallee() to obtain the ex-
pression specifying the function to be called, and InvokeExpr.getArgument (i) to obtain the ith
argument expression.

CallExpr: a function call.
NewExpr: a new expression.

MethodCallExpr: a function call whose callee expression is a property access; use
MethodCallExpr.getReceiver to access the receiver expression of the method call, and
MethodCallExpr.getMethodName () to get the method name (if it can be determined stati-
cally).

— PropAccess: a property access, that is, either a dot expression of the form e.f or an index expression
of the form e [p]; use PropAccess.getBase () to obtain the base expression on which the property
is accessed (e in the example), and PropAccess.getPropertyName () to determine the name of the
accessed property; if the name cannot be statically determined, getPropertyName () does not return
any value.

DotExpr: a dot expression.
IndexExpr: an index expression (also known as computed property access).
— UnaryExpr: a unary expression; use UnaryExpr.getOperand () to obtain the operand expression.

NegExpr (-), PlusExpr (+), LogNotExpr (1), BitNotExpr (~), TypeofExpr, VoidExpr, DeleteExpr,
SpreadElement (): various types of unary expressions.

- BinaryExpr: a binary expression; use BinaryExpr.getLeftOperand() and BinaryExpr.
getRightOperand () to access the operand expressions.

Comparison: any comparison expression.
- EqualityTest: any equality or inequality test.
- EqExpr (==), NEqExpr (!=): non-strict equality and inequality tests.

- StrictEqExpr (===), StrictNEqExpr (!==): strict equality and inequality tests.

7.2. CodeQL library for JavaScript 213

https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ObjectExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Property.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar FunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrowFunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ParExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar SeqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ConditionalExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar InvokeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CallExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NewExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar MethodCallExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar DotExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar IndexExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar UnaryExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NegExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PlusExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LogNotExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BitNotExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar TypeofExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar VoidExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar DeleteExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar SpreadElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BinaryExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar EqualityTest.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar EqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NEqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StrictEqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StrictNEqExpr.html

Learning CodeQL, Release 1.24

- LTExpr (<), LEExpr (<=), GTExpr (>), GEExpr (>=): numeric comparisons.
LShiftExpr (<<), RShiftExpr (>>), URShiftExpr (>>>): shift operators.

AddExpr (+), SubExpr (-), MulExpr (*), DivExpr (/), ModExpr (%), ExpExpr (**): arithmetic
operators.

BitOrExpr (|), XOrExpr (), BitAndExpr (&): bitwise operators.
InExpr: an in test.

InstanceofExpr: an instanceof test.

LogAndExpr (&&), LogOrExpr (| |): short-circuiting logical operators.

— Assignment: assignment expressions, either simple or compound; use Assignment.getLhs() and
Assignment.getRhs () to access the left- and right-hand side, respectively.

AssignExpr: a simple assignment expression.
CompoundAssignExpr: a compound assignment expression.

- AssignAddExpr, AssignSubExpr, AssignMulExpr, AssignDivExpr, AssignModExpr, As-
signLShiftExpr, AssignRShiftExpr, AssignURShiftExpr, AssignOrExpr, AssignXOrExpr,
AssignAndExpr, AssignExpExpr: different kinds of compound assignment expressions.

— UpdateExpr: an increment or decrement expression; use UpdateExpr.getOperand() to obtain the
operand expression.

PrelncExpr, PostIncExpr: an increment expression.
PreDecExpr, PostDecExpr: a decrement expression.

— YieldExpr: a yield expression; use YieldExpr.getOperand() to access the (optional) operand ex-
pression; use YieldExpr.isDelegating() to check whether this is a delegating yieldx.

— TemplateLiteral: an ECMAScript 2015 template literal; TemplateLiteral.getElement (i) returns
the ith element of the template, which may either be an interpolated expression or a constant template
element.

— TaggedTemplateExpr: an ECMAScript 2015 tagged template literal; use TaggedTemplateExpr.
getTag() to access the tagging expression, and TaggedTemplateExpr.getTemplate() to access
the template literal being tagged.

— TemplateElement: a constant template element; as for literals, use TemplateElement.getValue ()
to obtain the value of the element, and TemplateElement.getRawValue () for its raw value

— AwaitExpr: an await expression; use AwaitExpr.getOperand() to access the operand expression.

Stmt and Expr share a common superclass ExprOrStmt which is useful for queries that should operate either on
statements or on expressions, but not on any other AST nodes.

As an example of how to use expression AST nodes, here is a query that finds expressions of the forme + £ >>
g; such expressions should be rewritten as (e + f£) >> g to clarify operator precedence:

import javascript

from ShiftExpr shift, AddExpr add
where add = shift.getAnOperand()
select add, "This expression should be bracketed to clarify precedence rules."

214 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LTExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LEExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar GTExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar GEExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar RShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar URShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AddExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar SubExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar MulExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar DivExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ModExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ExpExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BitOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar XOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BitAndExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar InExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar InstanceofExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LogAndExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LogOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignAddExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignSubExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignMulExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignDivExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignModExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignLShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignLShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignRShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignURShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignXOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignAndExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignExpExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar UpdateExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PreIncExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PostIncExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PreDecExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PostDecExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar YieldExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TaggedTemplateExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AwaitExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar ExprOrStmt.html

Learning CodeQL, Release 1.24

See this in the query console on LGTM.com. When we ran this query on the meteor /meteor project in LGTM.com,
we found many results where precedence could be clarified using brackets.

Functions

JavaScript provides several ways of defining functions: in ECMAScript 5, there are function declaration statements
and function expressions, and ECMAScript 2015 adds arrow function expressions. These different syntactic forms
are represented by the classes FunctionDeclStmt (a subclass of Stmt), FunctionExpr (a subclass of Expr) and
ArrowFunctionExpr (also a subclass of Expr), respectively. All three are subclasses of Function, which provides
common member predicates for accessing function parameters or the function body:

* Function.getId() returns the Identifier naming the function, which may not be defined for function
expressions.

* Function.getParameter (i) and Function.getAParameter() access the ith parameter or any parame-
ter, respectively; parameters are modeled by the class Parameter, which is a subclass of BindingPattern (see
below).

* Function.getBody() returns the body of the function, which is usually a Stmt, but may be an Expr for
arrow function expressions and legacy expression closures.

As an example, here is a query that finds all expression closures:

import javascript

from FunctionExpr fe
where fe.getBody() instanceof Expr
select fe, "Use arrow expressions instead of expression closures."

See this in the query console on LGTM.com. None of the LGTM.com demo projects uses expression closures, but
you may find this query gets results on other projects.

As another example, this query finds functions that have two parameters that bind the same variable:

import javascript

from Function fun, Parameter p, Parameter q, int i, int j
where p = fun.getParameter(i) and
q = fun.getParameter(j) and
i < j and
p-getAVariable() = q.getAVariable()
select fun, "This function has two parameters that bind the same variable."

See this in the query console on LGTM.com. None of the LGTM.com demo projects has functions where two
parameters bind the same variable.

Classes

Classes can be defined either by class declaration statements, represented by the CodeQL class ClassDeclStmt
(which is a subclass of Stmt), or by class expressions, represented by the CodeQL class ClassExpr (which is a
subclass of Expr). Both of these classes are also subclasses of ClassDefinition, which provides common member
predicates for accessing the name of a class, its superclass, and its body:

7.2. CodeQL library for JavaScript 215

https://lgtm.com/query/690010024/
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar FunctionDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar FunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrowFunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar BindingPattern.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Expression_closures
https://lgtm.com/query/668510056/
https://lgtm.com/query/673860037/
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassDefinition.html

Learning CodeQL, Release 1.24

* ClassDefinition.getIdentifier () returns the Identifier naming the function, which may not be defined
for class expressions.

* ClassDefinition.getSuperClass() returns the Expr specifying the superclass, which may not be de-
fined.

* ClassDefinition.getMember (n) returns the definition of member n of this class.

* ClassDefinition.getMethod(n) restricts ClassDefinition.getMember (n) to methods (as opposed to
fields).

* ClassDefinition.getField(n) restricts ClassDefinition.getMember (n) to fields (as opposed to
methods).

* ClassDefinition.getConstructor() gets the constructor of this class, possibly a synthetic default con-
structor.

Note that class fields are not a standard language feature yet, so details of their representation may change.

Method definitions are represented by the class MethodDefinition, which (like its counterpart FieldDefinition for
fields) is a subclass of MemberDefinition. That class provides the following important member predicates:

* MemberDefinition.isStatic(): holds if this is a static member.
* MemberDefinition.isComputed(): holds if the name of this member is computed at runtime.
* MemberDefinition.getName (): gets the name of this member if it can be determined statically.

* MemberDefinition.getInit(): gets the initializer of this field; for methods, the initializer is a function
expressions, for fields it may be an arbitrary expression, and may be undefined.

There are three classes for modeling special methods: ConstructorDefinition models constructors, while Getter-
MethodDefinition and SetterMethodDefinition model getter and setter methods, respectively.

Declarations and binding patterns

Variables are declared by declaration statements (class DeclStmt), which come in three flavors: var statements
(represented by class VarDeclStmt), const statements (represented by class ConstDeclStmt), and let statements
(represented by class LetStmt). Every declaration statement has one or more declarators, represented by class
VariableDeclarator.

Each declarator consists of a binding pattern, returned by predicate VariableDeclarator.
getBindingPattern(), and an optional initializing expression, returned by VariableDeclarator.getInit ().

Often, the binding pattern is a simple identifier, as in var x = 42. In ECMAScript 2015 and later, however, it
can also be a more complex destructuring pattern, as in var [x, y] = arr.

The various kinds of binding patterns are represented by class BindingPattern and its subclasses:
* VarRef: a simple identifier in an I-value position, for example the x in var x orinx = 42
* Parameter: a function or catch clause parameter
e ArrayPattern: an array pattern, for example, the left-hand side of [x, y] = arr
¢ ObjectPattern: an object pattern, for example, the left-hand side of {x, y: =z} = o

Here is an example of a query to find declaration statements that declare the same variable more than once,
excluding results in minified code:

216 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar MethodDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar FieldDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar MemberDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ConstructorDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar GetterMethodDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar GetterMethodDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar SetterMethodDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar VarDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ConstDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LetStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VariableDeclarator.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar BindingPattern.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarRef.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar ArrayPattern.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar ObjectPattern.html

Learning CodeQL, Release 1.24

import javascript

from DeclStmt ds, VariableDeclarator dl, VariableDeclarator d2, Variable v, int i, int j
where dl = ds.getDecl(i) and

d2 = ds.getDecl(j) and

i< j and

v = dl.getBindingPattern().getAVariable() and

v = d2.getBindingPattern() .getAVariable() and

not ds.getTopLevel().isMinified()
select ds, "Variable " + v.getName() + " is declared both $@ and $@.", d1, "here", d2, "here"

See this in the query console on LGTM.com. This is not a common problem, so you may not find any results in
your own projects. The angular/angular.js project on LGTM.com has one instance of this problem at the time of
writing.

Notice the use of not ... isMinified() here and in the next few queries. This excludes any results
found in minified code. If you delete and not ds.getTopLevel().isMinified() and re-run the
query, two results in minified code in the meteor/meteor project are reported.

Properties

Properties in object literals are represented by class Property, which is also a subclass of ASTNode, but neither of
Expr nor of Stmt.

Class Property has two subclasses ValueProperty and PropertyAccessor, which represent, respectively, normal
value properties and getter/setter properties. Class PropertyAccessor, in turn, has two subclasses PropertyGetter
and PropertySetter representing getters and setters, respectively.

The predicates Property.getName () and Property.getInit() provide access to the defined propertys name
and its initial value. For PropertyAccessor and its subclasses, getInit () is overloaded to return the getter/setter
function.

As an example of a query involving properties, consider the following query that flags object expressions contain-
ing two identically named properties, excluding results in minified code:

import javascript

from ObjectExpr oe, Property pl, Property p2, int i, int j
where pl = oe.getProperty(i) and
p2 = oe.getProperty(j) and
i< j and
pl.getName() = p2.getName() and
not oe.getTopLevel().isMinified()
select oe, "Property " + pl.getName() + " is defined both $@ and $@.", pl, "here", p2, "here"

See this in the query console on LGTM.com. Many projects have a few instances of object expressions with two
identically named properties.

Modules

The JavaScript library has support for working with ECMAScript 2015 modules, as well as legacy CommonJS
modules (still commonly employed by Node.js code bases) and AMD-style modules. The classes ES2015Module,

7.2. CodeQL library for JavaScript 217

https://lgtm.com/query/668700496/
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Property.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar ASTNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Property.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ValueProperty.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertyAccessor.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertyAccessor.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertyGetter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertySetter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertyAccessor.html
https://lgtm.com/query/660700064/
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ES2015Module.html

Learning CodeQL, Release 1.24

NodeModule, and AMDModule represent these three types of modules, and all three extend the common super-
class Module.

The most important member predicates defined by Module are:

* Module.getName(): gets the name of the module, which is just the stem (that is, the basename without
extension) of the enclosing file.

* Module.getAnImportedModule(): gets another module that is imported (through import or require)
by this module.

* Module.getAnExportedSymbol (): gets the name of a symbol that this module exports.

Moreover, there is a class Import that models both ECMAScript 2015-style import declarations and
CommonJS/AMD-style require calls; its member predicate Import.getImportedModule provides access to
the module the import refers to, if it can be determined statically.

Name binding

Name binding is modeled in the JavaScript libraries using four concepts: scopes, variables, variable declarations,
and variable accesses, represented by the classes Scope, Variable, VarDecl and VarAccess, respectively.

Scopes

In ECMAScript 5, there are three kinds of scopes: the global scope (one per program), function scopes (one
per function), and catch clause scopes (one per catch clause). These three kinds of scopes are represented
by the classes GlobalScope, FunctionScope and CatchScope. ECMAScript 2015 adds block scopes for 1let-bound
variables, which are also represented by class Scope, class expression scopes (ClassExprScope), and module scopes
(ModuleScope).

Class Scope provides the following API:
* Scope.getScopeElement () returns the AST node inducing this scope; undefined for GlobalScope.
* Scope.getOuterScope () returns the lexically enclosing scope of this scope.
* Scope.getAnInnerScope () returns a scope lexically nested inside this scope.

* Scope.getVariable(name), Scope.getAVariable () return a variable declared (implicitly or explicitly)
in this scope.

Variables

The Variable class models all variables in a JavaScript program, including global variables, local variables, and
parameters (both of functions and catch clauses), whether explicitly declared or not.

It is important not to confuse variables and their declarations: local variables may have more than one declaration,
while global variables and the implicitly declared local arguments variable need not have a declaration at all.

Variable declarations and accesses

Variables may be declared by variable declarators, by function declaration statements and expressions, by class
declaration statements or expressions, or by parameters of functions and catch clauses. While these declarations
differ in their syntactic form, in each case there is an identifier naming the declared variable. We consider that
identifier to be the declaration proper, and assign it the class VarDecl. Identifiers that reference a variable, on the
other hand, are given the class VarAccess.

218 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/NodeJS.qll/type.NodeJS\protect \T1\textdollar NodeModule.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AMD.qll/type.AMD\protect \T1\textdollar AmdModule.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Modules.qll/type.Modules\protect \T1\textdollar Module.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Modules.qll/type.Modules\protect \T1\textdollar Module.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Modules.qll/type.Modules\protect \T1\textdollar Import.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Scope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar GlobalScope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar FunctionScope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar CatchScope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Scope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassExprScope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar ModuleScope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Scope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar GlobalScope.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html

Learning CodeQL, Release 1.24

The most important predicates involving variables, their declarations, and their accesses are as follows:
* Variable.getName(), VarDecl.getName (), VarAccess.getName () return the name of the variable.
* Variable.getScope () returns the scope to which the variable belongs.

e Variable.isGlobal(), Variable.isLocal(), Variable.isParameter () determine whether the vari-
able is a global variable, a local variable, or a parameter variable, respectively.

* Variable.getAnAccess() maps a Variable to all VarAccesses that refer to it.

* Variable.getADeclaration() maps a Variable to all VarDecls that declare it (of which there may be none,
one, or more than one).

e Variable.isCaptured() determines whether the variable is ever accessed in a scope that is lexically nested
within the scope where it is declared.

As an example, consider the following query which finds distinct function declarations that declare the same
variable, that is, two conflicting function declarations within the same scope (again excluding minified code):

import javascript

from FunctionDeclStmt f, FunctionDeclStmt g

where f != g and f.getVariable() = g.getVariable() and
not f.getTopLevel().isMinified() and
not g.getTopLevel().isMinified()

select f, g

See this in the query console on LGTM.com. Some projects declare conflicting functions of the same name and
rely on platform-specific behavior to disambiguate the two declarations.

Control flow

A different program representation in terms of intraprocedural control flow graphs (CFGs) is provided by the
classes in library CFG.qll.

Class ControlFlowNode represents a single node in the control flow graph, which is either an expression, a state-
ment, or a synthetic control flow node. Note that Expr and Stmt do not inherit from ControlFlowNode at the
CodeQL level, although their entity types are compatible, so you can explicitly cast from one to the other if you
need to map between the AST-based and the CFG-based program representations.

There are two kinds of synthetic control flow nodes: entry nodes (class ControlFlowEntryNode), which represent
the beginning of a top-level or function, and exit nodes (class ControlFlowExitNode), which represent their end.
They do not correspond to any AST nodes, but simply serve as the unique entry point and exit point of a control
flow graph. Entry and exit nodes can be accessed through the predicates StmtContainer.getEntry() and
StmtContainer.getExit ().

Most, but not all, top-levels and functions have another distinguished CFG node, the start node. This is the CFG
node at which execution begins. Unlike the entry node, which is a synthetic construct, the start node corresponds
to an actual program element: for top-levels, it is the first CFG node of the first statement; for functions, it is the
CFG node corresponding to their first parameter or, if there are no parameters, the first CFG node of the body.
Empty top-levels do not have a start node.

For most purposes, using start nodes is preferable to using entry nodes.

The structure of the control flow graph is reflected in the member predicates of ControlFlowNode:

7.2. CodeQL library for JavaScript 219

https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarDecl.html
https://lgtm.com/query/667290067/
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/module.CFG.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowEntryNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowExitNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowNode.html

Learning CodeQL, Release 1.24

* ControlFlowNode.getASuccessor () returns a ControlFlowNode that is a successor of this ControlFlowN-
ode in the control flow graph.

* ControlFlowNode.getAPredecessor() is the inverse of getASuccessor ().
* ControlFlowNode.isBranch() determines whether this node has more than one successor.
* ControlFlowNode.isJoin() determines whether this node has more than one predecessor.
* ControlFlowNode.isStart() determines whether this node is a start node.

Many control-flow-based analyses are phrased in terms of basic blocks rather than single control flow nodes,
where a basic block is a maximal sequence of control flow nodes without branches or joins. The class BasicBlock
from BasicBlocks.qll represents all such basic blocks. Similar to ControlFlowNode, it provides member predi-
cates getASuccessor () and getAPredecessor () to navigate the control flow graph at the level of basic blocks,
and member predicates getANode (), getNode (int), getFirstNode () and getLastNode () to access individual
control flow nodes within a basic block. The predicate Function.getEntryBB() returns the entry basic block
in a function, that is, the basic block containing the functions entry node. Similarly, Function.getStartBB()
provides access to the start basic block, which contains the functions start node. As for CFG nodes, getStartBB()
should normally be preferred over getEntryBB().

As an example of an analysis using basic blocks, BasicBlock.isLiveAtEntry(v, u) determines whether vari-
able v is live at the entry of the given basic block, and if so binds u to a use of v that refers to its value at the
entry. We can use it to find global variables that are used in a function where they are not live (that is, every read
of the variable is preceded by a write), suggesting that the variable was meant to be declared as a local variable
instead:

import javascript

from Function f, GlobalVariable gv
where gv.getAnAccess() .getEnclosingFunction() = f and
not f.getStartBB().isLiveAtEntry(gv, _)
select f, "This function uses " + gv + " like a local variable."

See this in the query console on LGTM.com. Many projects have some variables which look as if they were
intended to be local.

Data flow

Definitions and uses

Library DefUse.qll provides classes and predicates to determine def-use relationships between definitions and uses
of variables.

Classes VarDef and VarUse contain all expressions that define and use a variable, respectively. For the former, you
can use predicate VarDef . getAVariable () to find out which variables are defined by a given variable definition
(recall that destructuring assignments in ECMAScript 2015 define several variables at the same time). Similarly,
predicate VarUse.getVariable () returns the (single) variable being accessed by a variable use.

The def-use information itself is provided by predicate VarUse.getADef (), that connects a use of a variable to a
definition of the same variable, where the definition may reach the use.

As an example, the following query finds definitions of local variables that are not used anywhere; that is, the
variable is either not referenced at all after the definition, or its value is overwritten:

220 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowNode.html
http://en.wikipedia.org/wiki/Basic_block
https://help.semmle.com/qldoc/javascript/semmle/javascript/BasicBlocks.qll/type.BasicBlocks\protect \T1\textdollar BasicBlock.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/BasicBlocks.qll/module.BasicBlocks.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CFG.qll/type.CFG\protect \T1\textdollar ControlFlowNode.html
http://en.wikipedia.org/wiki/Live_variable_analysis
https://lgtm.com/query/686320048/
https://help.semmle.com/qldoc/javascript/semmle/javascript/DefUse.qll/module.DefUse.html
http://en.wikipedia.org/wiki/Use-define_chain
https://help.semmle.com/qldoc/javascript/semmle/javascript/DefUse.qll/type.DefUse\protect \T1\textdollar VarDef.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/DefUse.qll/type.DefUse\protect \T1\textdollar VarUse.html

Learning CodeQL, Release 1.24

import javascript

from VarDef def, LocalVariable v
where v = def.getAVariable() and

not exists (VarUse use | def = use.getADef())
select def, "Dead store of local variable."

See this in the query console on LGTM.com. Many projects have some examples of useless assignments to local
variables.

SSA

A more fine-grained representation of a programs data flow based on Static Simple Assignment Form (SSA) is
provided by the library semmle. javascript.SSA.

In SSA form, each use of a local variable has exactly one (SSA) definition that reaches it. SSA definitions are
represented by class SsaDefinition. They are not AST nodes, since not every SSA definition corresponds to an
explicit element in the source code.

Altogether, there are five kinds of SSA definitions:

1. Explicit definitions (SsaExplicitDefinition): these simply wrap a VarDef, that is, a definition like x = 1
appearing explicitly in the source code.

2. Implicit initializations (Ssalmplicitinit): these represent the implicit initialization of local variables with
undefined at the beginning of their scope.

3. Phi nodes (SsaPhiNode): these are pseudo-definitions that merge two or more SSA definitions where nec-
essary; see the Wikipedia page linked to above for an explanation.

4. Variable captures (SsaVariableCapture): these are pseudo-definitions appearing at places in the code where
the value of a captured variable may change without there being an explicit assignment, for example due
to a function call.

5. Refinement nodes (SsaRefinementNode): these are pseudo-definitions appearing at places in the code
where something becomes known about a variable; for example, a conditional if (x === null) induces
a refinement node at the beginning of its then branch recording the fact that x is known to be null there.
(In the literature, these are sometimes known as pi nodes.)

Data flow nodes

Moving beyond just variable definitions and uses, library semmle. javascript.dataflow.DataFlow provides a
representation of the program as a data flow graph. Its nodes are values of class DataFlow::Node, which has two
subclasses ValueNode and SsaDefinitionNode. Nodes of the former kind wrap an expression or a statement that
is considered to produce a value (specifically, a function or class declaration statement, or a TypeScript namespace
or enum declaration). Nodes of the latter kind wrap SSA definitions.

You can use the predicate DataFlow: : valueNode to convert an expression, function or class into its correspond-
ing ValueNode, and similarly DataFlow: :ssaDefinitionNode to map an SSA definition to its corresponding
SsaDefinitionNode.

There is also an auxiliary predicate DataFlow: : parameterNode that maps a parameter to its corresponding data
flow node. (This is really just a convenience wrapper around DataFlow: : ssaDefinitionNode, since parameters
are also considered to be SSA definitions.)

7.2. CodeQL library for JavaScript 221

https://lgtm.com/query/2086440429/
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://help.semmle.com/qldoc/javascript/semmle/javascript/SSA.qll/type.SSA\protect \T1\textdollar SsaDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/SSA.qll/type.SSA\protect \T1\textdollar SsaExplicitDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/DefUse.qll/type.DefUse\protect \T1\textdollar VarDef.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/SSA.qll/type.SSA\protect \T1\textdollar SsaImplicitInit.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/SSA.qll/type.SSA\protect \T1\textdollar SsaPhiNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/SSA.qll/type.SSA\protect \T1\textdollar SsaVariableCapture.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/SSA.qll/type.SSA\protect \T1\textdollar SsaRefinementNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/type.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node.html

Learning CodeQL, Release 1.24

Going in the other direction, there is a predicate ValueNode.getAstNode() for mapping from ValueNodes
to ASTNodes, and SsaDefinitionNode.getSsaVariable() for mapping from SsaDefinitionNodes to
SsaVariables. There is also a utility predicate Node.asExpr() that gets the underlying expression for a
ValueNode, and is undefined for all nodes that do not correspond to an expression. (Note in particular that
this predicate is not defined for ValueNodes wrapping function or class declaration statements!)

You can use the predicate DataFlow: :Node.getAPredecessor () to find other data flow nodes from which values
may flow into this node, and getASuccessor for the other direction.

For example, here is a query that finds all invocations of a method called send on a value that comes from a
parameter named res, indicating that it is perhaps sending an HTTP response:

import javascript

from SimpleParameter res, DataFlow::Node resNode, MethodCallExpr send

where res.getName() = "res" and
resNode = DataFlow::parameterNode(res) and
resNode.getASuccessor+() = DataFlow::valueNode (send.getReceiver()) and
send.getMethodName () = "send"

select send

See this in the query console on LGTM.com. The query finds HTTP response sends in the AMP HTML project.

Note that the data flow modeling in this library is intraprocedural, that is, flow across function calls and returns
is not modeled. Likewise, flow through object properties and global variables is not modeled.

Type inference

The library semmle. javascript.dataflow.TypeInference implements a simple type inference for JavaScript
based on intraprocedural, heap-insensitive flow analysis. Basically, the inference algorithm approximates the
possible concrete runtime values of variables and expressions as sets of abstract values (represented by the class
AbstractValue), each of which stands for a set of concrete values.

For example, there is an abstract value representing all non-zero numbers, and another representing all non-
empty strings except for those that can be converted to a number. Both of these abstract values are fairly coarse
approximations that represent very large sets of concrete values.

Other abstract values are more precise, to the point where they represent single concrete values: for example,
there is an abstract value representing the concrete null value, and another representing the number zero.

There is a special group of abstract values called indefinite abstract values that represent all concrete values.
The analysis uses these to handle expressions for which it cannot infer a more precise value, such as function
parameters (as mentioned above, the analysis is intraprocedural and hence does not model argument passing) or
property reads (the analysis does not model property values either).

Each indefinite abstract value is associated with a string value describing the cause of imprecision. In the above
examples, the indefinite value for the parameter would have cause "call", while the indefinite value for the
property would have cause "heap".

To check whether an abstract value is indefinite, you can use the isIndefinite member predicate. Its single
argument describes the cause of imprecision.

Each abstract value has one or more associated types (CodeQL class InferredType corresponding roughly to
the type tags computed by the typeof operator. The types are null, undefined, boolean, number, string,
function, class, date and object.

222 Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/1506058347056/
https://lgtm.com/projects/g/ampproject/amphtml
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/AbstractValues.qll/type.AbstractValues\protect \T1\textdollar AbstractValue.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/InferredTypes.qll/type.InferredTypes\protect \T1\textdollar InferredType.html

Learning CodeQL, Release 1.24

To access the results of the type inference, use class DataFlow::AnalyzedNode: any DataFlow::Node can be cast
to this class, and additionally there is a convenience predicate Expr: :analyze that maps expressions directly to
their corresponding AnalyzedNodes.

Once you have an AnalyzedNode, you can use predicate AnalyzedNode.getAValue() to access the abstract
values inferred for it, and getAType () to get the inferred types.

For example, here is a query that looks for null checks on expressions that cannot, in fact, be null:

import javascript

from StrictEqualityTest eq, DataFlow::AnalyzedNode nd, NullLiteral null
where eq.hasOperands(nd.asExpr(), null) and

not nd.getAValue().isIndefinite(_) and

not nd.getAValue() instanceof AbstractNull
select eq, "Spurious null check."

To paraphrase, the query looks for equality tests eq where one operand is a null literal and the other some
expression that we convert to an AnalyzedNode. If the type inference results for that node are precise (that is,
none of the inferred values is indefinite) and (the abstract representation of) null is not among them, we flag

eq.

You can add custom type inference rules by defining new subclasses of DataFlow::AnalyzedNode and
overriding getAValue. You can also introduce new abstract values by extending the abstract class
CustomAbstractValueTag, which is a subclass of string: each string belonging to that class induces a cor-
responding abstract value of type CustomAbstractValue. You can use the predicate CustomAbstractValue.
getTag() to map from the abstract value to its tag. By implementing the abstract predicates of class
CustomAbstractValueTag you can define the semantics of your custom abstract values, such as what primi-
tive value they coerce to and what type they have.

Call graph

The JavaScript library implements a simple call graph construction algorithm to statically approximate the possible
call targets of function calls and new expressions. Due to the dynamically typed nature of JavaScript and its
support for higher-order functions and reflective language features, building static call graphs is quite difficult.
Simple call graph algorithms tend to be incomplete, that is, they often fail to resolve all possible call targets.
More sophisticated algorithms can suffer from the opposite problem of imprecision, that is, they may infer many
spurious call targets.

The call graph is represented by the member predicate getACallee() of class DataFlow::InvokeNode, which
computes possible callees of the given invocation, that is, functions that may at runtime be invoked by this ex-
pression.

Furthermore, there are three member predicates that indicate the quality of the callee information for this invo-
cation:

* DataFlow: :InvokeNode.isImprecise(): holds for invocations where the call graph builder might infer
spurious call targets.

* DataFlow: :InvokeNode.isIncomplete(): holds for invocations where the call graph builder might fail
to infer possible call targets.

* DataFlow: :InvokeNode.isUncertain(): holds if either isImprecise() or isUncertain() holds.

7.2. CodeQL library for JavaScript 223

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/TypeInference.qll/type.TypeInference\protect \T1\textdollar AnalyzedNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/type.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node.html
http://en.wikipedia.org/wiki/Call_graph
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar InvokeNode.html

Learning CodeQL, Release 1.24

As an example of a call-graph-based query, here is a query to find invocations for which the call graph builder
could not find any callees, despite the analysis being complete for this invocation:

import javascript

from DataFlow: :InvokeNode invk
where not invk.isIncomplete() and
not exists(invk.getACallee())
select invk, "Unable to find a callee for this invocation."

See this in the query console on LGTM.com

Inter-procedural data flow

The data flow graph-based analyses described so far are all intraprocedural: they do not take flow from function
arguments to parameters or from a return to the functions caller into account. The data flow library also provides
a framework for constructing custom inter-procedural analyses.

We distinguish here between data flow proper, and taint tracking: the latter not only considers value-preserving
flow (such as from variable definitions to uses), but also cases where one value influences (taints) another without
determining it entirely. For example, in the assignment s2 = si1.substring(i), the value of s1 influences the
value of s2, because s2 is assigned a substring of s1. In general, s2 will not be assigned s1 itself, so there is no
data flow from s1 to s2, but s1 still taints s2.

The simplest way of implementing an interprocedural data flow analysis is to extend either class
DataFlow: :TrackedNode or DataFlow: : TrackedExpr. The former is a subclass of DataFlow: :Node, the latter
of Expr, and extending them ensures that the newly added values are tracked interprocedurally. You can use the
predicate flowsTo to find out which nodes/expressions the tracked value flows to.

For example, suppose that we are developing an analysis to find hard-coded passwords. We might start by writing
a simple query that looks for string constants flowing into variables named "password". To do this, we can extend
TrackedExpr to track all constant strings, f1lowsTo to find cases where such a string flows into a (SSA) definition
of a password variable:

import javascript

class TrackedStringliteral extends DataFlow::TrackedNode {
TrackedStringLiteral() {
this.asExpr() instanceof ConstantString

from TrackedStringlLiteral source, DataFlow::Node sink, SsaExplicitDefinition def
where source.flowsTo(sink) and sink = DataFlow::ssaDefinitionNode(def) and

def .getSourceVariable() .getName() . toLowerCase() = "password"
select sink

Note that TrackedNode and TrackedExpr do not restrict the set of sinks for the inter-procedural flow analysis,
tracking flow into any expression that they might flow to. This can be expensive for large code bases, and is often
unnecessary, since usually you are only interested in flow to a particular set of sinks. For example, the above
query only looks for flow into assignments to password variables.

This is a particular instance of a general pattern, whereby we want to specify a data flow or taint analysis in

224 Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/3260345690335671362/

Learning CodeQL, Release 1.24

terms of its sources (where flow starts), sinks (where it should be tracked), and barriers or sanitizers (where flow
is interrupted). The example does not include any sanitizers, but they are very common in security analyses: for
example, an analysis that tracks the flow of untrusted user input into, say, a SQL query has to keep track of code
that validates the input, thereby making it safe to use. Such a validation step is an example of a sanitizer.

The classes DataFlow: : Configuration and TaintTracking: :Configuration allow specifying a data flow or
taint analysis, respectively, by overriding the following predicates:

* isSource(DataFlow: :Node nd) selects all nodes nd from where flow tracking starts.
* isSink(DataFlow: :Node nd) selects all nodes nd to which the flow is tracked.

e isBarrier(DataFlow::Node nd) selects all nodes nd that act as a barrier for data flow; isSanitizer is
the corresponding predicate for taint tracking configurations.

* isBarrierEdge(DataFlow::Node src, DataFlow::Node trg) is a variant of isBarrier(nd) that al-
lows specifying barrier edges in addition to barrier nodes; again, isSanitizerEdge is the corresponding
predicate for taint tracking;

* isAdditionalFlowStep(DataFlow: :Node src, DataFlow::Node trg) allows specifying custom addi-
tional flow steps for this analysis; isAdditionalTaintStep is the corresponding predicate for taint tracking
configurations.

Since for technical reasons both Configuration classes are subtypes of string, you have to choose a unique
name for each flow configuration and equate this with it in the characteristic predicate (as in the example below).

The predicate Configuration.hasFlow performs the actual flow tracking, starting at a source and looking for
flow to a sink that does not pass through a barrier node or edge.

To continue with our above example, we can phrase it as a data flow configuration as follows:

class PasswordTracker extends DataFlow::Configuration {
PasswordTracker () {
// unique identifier for this configuration

this = "PasswordTracker"

override predicate isSource(DataFlow::Node nd) {
nd.asExpr() instanceof StringLiteral

override predicate isSink(DataFlow::Node nd) {
passwordVarAssign(_, nd)

predicate passwordVarAssign(Variable v, DataFlow::Node nd) {
exists (SsaExplicitDefinition def |
nd = DataFlow::ssaDefinitionNode(def) and
def.getSourceVariable() = v and
v.getName () .toLowerCase() = "password"

Now we can rephrase our query to use Configuration.hasFlow:

7.2. CodeQL library for JavaScript 225

Learning CodeQL, Release 1.24

from PasswordTracker pt, DataFlow::Node source, DataFlow::Node sink, Variable v
where pt.hasFlow(source, sink) and pt.passwordVarAssign(v, sink)
select sink, "Password variable " + v + " is assigned a constant string."

Note that while analyses implemented in this way are inter-procedural in that they track flow and taint across
function calls and returns, flow through global variables is not tracked. Flow through object properties is only
tracked in limited cases, for example through properties of object literals or CommonJS module and exports
objects.

Syntax errors

JavaScript code that contains syntax errors cannot usually be analyzed. For such code, the lexical and syntactic
representations are not available, and hence no name binding information, call graph or control and data flow. All
that is available in this case is a value of class JSParseError representing the syntax error. It provides information
about the syntax error location (JSParseError is a subclass of Locatable) and the error message through predicate
JSParseError.getMessage.

Note that for some very simple syntax errors the parser can recover and continue parsing. If this happens, lexical
and syntactic information is available in addition to the JSParseError values representing the (recoverable) syntax
errors encountered during parsing.

Frameworks

AngularJS

The semmle. javascript.frameworks.AngularJS library provides support for working with AngularJS (Angu-
lar 1.x) code. Its most important classes are:

e AngularJS::AngularModule: an Angular module

¢ AngularJS::DirectiveDefinition, AngularJS::FactoryRecipeDefinition, AngularJS::FilterDefinition, Angu-
larJS::ControllerDefinition: a definition of a directive, service, filter or controller, respectively

* AngularJS::InjectableFunction: a function that is subject to dependency injection

HTTP framework libraries

The library semmle.javacript.frameworks.HTTP provides classes modeling common concepts from various
HTTP frameworks.

Currently supported frameworks are Express, the standard Node.js http and https modules, Connect, Koa, Hapi
and Restify.

The most important classes include (all in module HTTP):
* ServerDefinition: an expression that creates a new HTTP server.
* RouteHandler: a callback for handling an HTTP request.
* RequestExpr: an expression that may contain an HTTP request object.
* ResponseExpr: an expression that may contain an HTTP response object.
* HeaderDefinition: an expression that sets one or more HTTP response headers.

* CookieDefinition: an expression that sets a cookie in an HTTP response.

226 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Errors.qll/type.Errors\protect \T1\textdollar JSParseError.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Errors.qll/type.Errors\protect \T1\textdollar JSParseError.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Locations.qll/type.Locations\protect \T1\textdollar Locatable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Errors.qll/type.Errors\protect \T1\textdollar JSParseError.html
https://www.angularjs.org/
https://www.angularjs.org/
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/AngularJS/AngularJSCore.qll/type.AngularJSCore\protect \T1\textdollar AngularModule.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/AngularJS/ServiceDefinitions.qll/type.ServiceDefinitions\protect \T1\textdollar DirectiveDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/AngularJS/ServiceDefinitions.qll/type.ServiceDefinitions\protect \T1\textdollar FactoryRecipeDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/AngularJS/ServiceDefinitions.qll/type.ServiceDefinitions\protect \T1\textdollar FilterDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/AngularJS/ServiceDefinitions.qll/type.ServiceDefinitions\protect \T1\textdollar ControllerDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/AngularJS/ServiceDefinitions.qll/type.ServiceDefinitions\protect \T1\textdollar ControllerDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/AngularJS/DependencyInjections.qll/type.DependencyInjections\protect \T1\textdollar InjectableFunction.html
https://expressjs.com/
https://github.com/senchalabs/connect
https://koajs.com
https://hapijs.com/
http://restify.com/

Learning CodeQL, Release 1.24

* RequestInputAccess: an expression that accesses user-controlled request data.

For each framework library, there is a corresponding CodeQL library (for example semmle.javacript.
frameworks.Express) that instantiates the above classes for that framework and adds framework-specific
classes.

Node.js

The semmle. javascript.NodeJS library provides support for working with Node.js modules through the fol-
lowing classes:

* NodeModule: a top-level that defines a Node.js module; see the section on Modules for more information.
* Require: a call to the special require function that imports a module.

As an example of the use of these classes, here is a query that counts for every module how many other modules
it imports:

import javascript

from NodeModule m
select m, count(m.getAnImportedModule())

See this in the query console on LGTM.com. When you analyze a project, for each module you can see how many
other modules it imports.

NPM

The semmle. javascript.NPM library provides support for working with NPM packages through the following
classes:

* PackageJSON: a package . json file describing an NPM package; various getter predicates are available for
accessing detailed information about the package, which are described in the online API documentation.

* BugTrackerInfo, ContributorInfo, RepositoryInfo: these classes model parts of the package. json file pro-
viding information on bug tracking systems, contributors and repositories.

* PackageDependencies: models the dependencies of an NPM package; the predicate
PackageDependencies.getADependency (pkg, v) binds pkg to the name and v to the version of a
package required by a package. json file.

* NPMPackage: a subclass of Folder that models an NPM package; important member predicates include:

NPMPackage . getPackageName () returns the name of this package.

NPMPackage . getPackageJSON () returns the package. json file for this package.

NPMPackage . getNodeModulesFolder () returns the node_modules folder for this package.

NPMPackage . getAModule () returns a Node.js module belonging to this package (not including mod-
ules in the node_modules folder).

As an example of the use of these classes, here is a query that identifies unused dependencies, that is, module
dependencies that are listed in the package. json file, but which are not imported by any require call:

7.2. CodeQL library for JavaScript 227

http://nodejs.org/
https://help.semmle.com/qldoc/javascript/semmle/javascript/NodeJS.qll/type.NodeJS\protect \T1\textdollar NodeModule.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/NodeJS.qll/type.NodeJS\protect \T1\textdollar Require.html
https://lgtm.com/query/659662207/
http://npmjs.org/
https://help.semmle.com/qldoc/javascript/semmle/javascript/NPM.qll/type.NPM\protect \T1\textdollar PackageJSON.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/NPM.qll/module.NPM.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/NPM.qll/type.NPM\protect \T1\textdollar BugTrackerInfo.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/NPM.qll/type.NPM\protect \T1\textdollar ContributorInfo.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/NPM.qll/type.NPM\protect \T1\textdollar RepositoryInfo.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/NPM.qll/type.NPM\protect \T1\textdollar PackageDependencies.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/NPM.qll/type.NPM\protect \T1\textdollar NPMPackage.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Folder.html

Learning CodeQL, Release 1.24

import javascript

from NPMPackage pkg, PackageDependencies deps, string name

where deps = pkg.getPackageJSON() .getDependencies() and

deps.getADependency(name, _) and

not exists (Require req | req.getTopLevel() = pkg.getAModule() | name = req.getImportedPath().
~getValue())

select deps, "Unused dependency '" + name + "'.

See this in the query console on LGTM.com. It is not uncommon for projects to have some unused dependencies.

React

The semmle. javascript.frameworks.React library provides support for working with React code through the
ReactComponent class, which models a React component defined either in the functional style or the class-based
style (both ECMAScript 2015 classes and old-style React . createClass classes are supported).

Databases

The class SQL: : SqlString represents an expression that is interpreted as a SQL command. Currently, we model
SQL commands issued through the following npm packages: mysql, pg, pg-pool, sqlite3, mssql and sequelize.

Similarly, the class NoSQL: : Query represents an expression that is interpreted as a NoSQL query by the mongodb
or mongoose package.

Finally, the class DatabaseAccess contains all data flow nodes that perform a database access using any of the
packages above.

For example, here is a query to find SQL queries that use string concatenation (instead of a templating-based
solution, which is usually safer):

import javascript

from SQL::SqlString ss
where ss instanceof AddExpr
select ss, "Use templating instead of string concatenation."

See this in the query console on LGTM.com, showing two (benign) results on strong-arc.

Miscellaneous

Externs

The semmle. javascript.Externs library provides support for working with externs through the following
classes:

* ExternalDecl: common superclass modeling all different kinds of externs declarations; it defines two mem-
ber predicates:

— ExternalDecl.getQualifiedName () returns the fully qualified name of the declared entity.

- ExternalDecl.getName () returns the unqualified name of the declared entity.

228 Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/666680077/
https://facebook.github.io/react/
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/React.qll/type.React\protect \T1\textdollar ReactComponent.html
https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/pg-pool
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/mssql
https://www.npmjs.com/package/sequelize
https://lgtm.com/query/1506076336224/
https://lgtm.com/projects/g/strongloop/strong-arc/
https://developers.google.com/closure/compiler/docs/api-tutorial3
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalDecl.html

Learning CodeQL, Release 1.24

* ExternalTypedef: a subclass of ExternalDecl representing type declarations; unlike other externs declara-
tions, such declarations do not declare a function or object that is present at runtime, but simply introduce
an alias for a type.

* ExternalVarDecl: a subclass of ExternalDecl representing a variable or function declaration; it defines two
member predicates:

— ExternalVarDecl.getInit () returns the initializer associated with this declaration, if any; this can
either be a Function or an Expr.

- ExternalVarDecl.getDocumentation() returns the JSDoc comment associated with this declara-
tion.

Variables and functions declared in an externs file are either globals (represented by class ExternalGlobalDecl),
or members (represented by class ExternalMemberDecl).

Members are further subdivided into static members (class ExternalStaticMemberDecl) and instance members
(class ExternallnstanceMemberDecl).

For more details on these and other classes representing externs, see the API documentation.

HTML

The semmle. javascript.HTML library provides support for working with HTML documents. They are repre-
sented as a tree of HTML: :Element nodes, each of which may have zero or more attributes represented by class
HTML: : Attribute.

Similar to the abstract syntax tree representation, HTML: : Element has member predicates getChild(i) and
getParent () to navigate from an element to its ith child element and its parent element, respectively. Use
predicate HTML: :Element.getAttribute(i) to get the ith attribute of the element, and HTML: :Element.
getAttributeByName (n) to get the attribute with name n.

For HTML: : Attribute, predicates getName () and getValue() provide access to the attributes name and value,
respectively.

Both HTML: : Element and HTML: : Attribute have a predicate getRoot () that gets the root HTML: : Element of
the document to which they belong.

JSDoc

The semmle.javascript.JSDoc library provides support for working with JSDoc comments. Documentation
comments are parsed into an abstract syntax tree representation closely following the format employed by the
Doctrine JSDoc parser.

A JSDoc comment as a whole is represented by an entity of class JSDoc, while individual tags are represented by
class JSDocTag. Important member predicates of these two classes include:

e JSDoc.getDescription() returns the descriptive header of the JSDoc comment, if any.

* JSDoc.getComment () maps the JSDoc entity to its underlying Comment entity.

* JSDocTag.getATag() returns a tag in this JSDoc comment.

* JSDocTag.getTitle() returns the title of his tag; for instance, an @param tag has title "param".
* JSDocTag.getName () returns the name of the parameter or variable documented by this tag.

* JSDocTag.getType () returns the type of the parameter or variable documented by this tag.

7.2. CodeQL library for JavaScript 229

https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalTypedef.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalVarDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalGlobalDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalMemberDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalStaticMemberDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/type.Externs\protect \T1\textdollar ExternalInstanceMemberDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Externs.qll/module.Externs.html
http://usejsdoc.org/
https://github.com/Constellation/doctrine
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/type.JSDoc\protect \T1\textdollar JSDoc.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/type.JSDoc\protect \T1\textdollar JSDocTag.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/type.JSDoc\protect \T1\textdollar JSDoc.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Comments.qll/type.Comments\protect \T1\textdollar Comment.html

Learning CodeQL, Release 1.24

* JSDocTag.getDescription() returns the description associated with this tag.

Types in JSDoc comments are represented by the class JSDocTypeExpr and its subclasses, which again represent
type expressions as abstract syntax trees. Examples of type expressions are JSDocAnyTypeExpr, representing the
any type *, or JSDocNullTypeExpr, representing the null type.

As an example, here is a query that finds @param tags that do not specify the name of the documented parameter:

import javascript

from JSDocTag t

where t.getTitle() = "param" and

not exists(t.getName())

select t, "Cparam tag is missing name."

See this in the query console on LGTM.com. Of the LGTM.com demo projects analyzed, only Semantic-
Org/Semantic-UI has an example where the @param tag omits the name.

For full details on these and other classes representing JSDoc comments and type expressions, see the API docu-
mentation.

JSX

The semmle. javascript.JSX library provides support for working with JSX code.

Similar to the representation of HTML documents, JSX fragments are modeled as a tree of JSXElements, each of
which may have zero or more JSXAttributes.

However, unlike HTML, JSX is interleaved with JavaScript, hence JSXElement is a subclass of Expr. Like
HTML: :Element, it has predicates getAttribute(i) and getAttributeByName(n) to look up attributes of a
JSX element. Its body elements can be accessed by predicate getABodyElement (); note that the results of this
predicate are arbitrary expressions, which may either be further JSXElements, or other expressions that are inter-
polated into the body of the outer element.

JSXAttribute, again not unlike HTML: : Attribute, has predicates getName () and getValue() to access the at-
tribute name and value.

JSON

The semmle.javascript.JSON library provides support for working with JSON files that were processed by the
JavaScript extractor when building the CodeQL database.

JSON files are modeled as trees of JSON values. Each JSON value is represented by an entity of class JSONValue,
which provides the following member predicates:

e JSONValue.getParent () returns the JSON object or array in which this value occurs.
* JSONValue.getChild (i) returns the ith child of this JSON object or array.

Note that JSONValue is a subclass of Locatable, so the usual member predicates of Locatable can be used to
determine the file in which a JSON value appears, and its location within that file.

Class JSONValue has the following subclasses:

* JSONPrimitiveValue: a JSON-encoded primitive value; use JSONPrimitiveValue.getValue() to obtain
a string representation of the value.

230 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/type.JSDoc\protect \T1\textdollar JSDocTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/type.JSDoc\protect \T1\textdollar JSDocAnyTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/type.JSDoc\protect \T1\textdollar JSDocNullTypeExpr.html
https://lgtm.com/query/673060054/
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/module.JSDoc.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSDoc.qll/module.JSDoc.html
https://facebook.github.io/react/docs/jsx-in-depth.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSX.qll/type.JSX\protect \T1\textdollar JSXElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSX.qll/type.JSX\protect \T1\textdollar JSXAttribute.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSX.qll/type.JSX\protect \T1\textdollar JSXElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSX.qll/type.JSX\protect \T1\textdollar JSXElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSX.qll/type.JSX\protect \T1\textdollar JSXAttribute.html
http://json.org/
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONValue.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONValue.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Locations.qll/type.Locations\protect \T1\textdollar Locatable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Locations.qll/type.Locations\protect \T1\textdollar Locatable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONValue.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONPrimitiveValue.html

Learning CodeQL, Release 1.24

— JSONNull, JSONBoolean, JSONNumber, JSONString: subclasses of JSONPrimitiveValue representing
the various kinds of primitive values.

* JSONArray: a JSON-encoded array; use JSONArray.getElementValue(i) to access the ith element of
the array.

* JSONODbject: a JSON-encoded object; use JSONObject.getValue(n) to access the value of property n of
the object.

Regular expressions

The semmle. javascript.Regexp library provides support for working with regular expression literals. The
syntactic structure of regular expression literals is represented as an abstract syntax tree of regular expression
terms, modeled by the class RegExpTerm. Similar to ASTNode, class RegExpTerm provides member predicates
getParent () and getChild (i) to navigate the structure of the syntax tree.

Various subclasses of RegExpTerm model different kinds of regular expression constructs and operators; see the
API documentation for details.

YAML

The semmle. javascript.YAML library provides support for working with YAML files that were processed by the
JavaScript extractor when building the CodeQL database.

YAML files are modeled as trees of YAML nodes. Each YAML node is represented by an entity of class YAMLNode,
which provides, among others, the following member predicates:

* YAMLNode.getParentNode () returns the YAML collection in which this node is syntactically nested.

* YAMLNode.getChildNode (i) returns the ith child node of this node, YAMLNode.getAChildNode() re-
turns any child node of this node.

* YAMLNode.getTag() returns the tag of this YAML node.
* YAMLNode.getAnchor () returns the anchor associated with this YAML node, if any.
* YAMLNode.eval () returns the YAMIValue this YAML node evaluates to after resolving aliases and includes.

The various kinds of scalar values available in YAML are represented by classes YAMLInteger, YAMLFloat, YAML-
Timestamp, YAMLBool, YAMLNull and YAMLString. Their common superclass is YAMLScalar, which has a mem-
ber predicate getValue () to obtain the value of a scalar as a string.

YAMLMapping and YAMLSequence represent mappings and sequences, respectively, and are subclasses of YAML-
Collection.

Alias nodes are represented by class YAMLAliasNode, while YAMLMergeKey and YAMLInclude represent merge
keys and !include directives, respectively.

Predicate YAMLMapping.maps(key, value) models the key-value relation represented by a mapping, taking
merge keys into account.

7.2.3 Further reading
* CodeQL queries for JavaScript

* Example queries for JavaScript

¢ CodeQL library reference for JavaScript

7.2. CodeQL library for JavaScript 231

https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONNull.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONBoolean.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONNumber.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONString.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONPrimitiveValue.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONArray.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JSON.qll/type.JSON\protect \T1\textdollar JSONObject.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Regexp.qll/type.Regexp\protect \T1\textdollar RegExpTerm.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar ASTNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Regexp.qll/type.Regexp\protect \T1\textdollar RegExpTerm.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Regexp.qll/type.Regexp\protect \T1\textdollar RegExpTerm.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Regexp.qll/module.Regexp.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Regexp.qll/module.Regexp.html
http://yaml.org/
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLValue.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLInteger.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLFloat.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLTimestamp.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLTimestamp.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLBool.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLNull.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLString.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLScalar.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLMapping.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLSequence.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLCollection.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLCollection.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLAliasNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLMergeKey.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/YAML.qll/type.YAML\protect \T1\textdollar YAMLInclude.html
https://github.com/github/codeql/tree/master/javascript/ql/src
https://github.com/github/codeql/tree/master/javascript/ql/examples
https://help.semmle.com/qldoc/javascript/

Learning CodeQL, Release 1.24

* QL language reference

¢ CodeQL tools

7.3 CodeQL library for TypeScript

When youre analyzing a TypeScript program, you can make use of the large collection of classes in the CodeQL
library for TypeScript.

7.3.1 Overview

Support for analyzing TypeScript code is bundled with the CodeQL libraries for JavaScript, so you can include the
full TypeScript library by importing the javascript.qll module:

import javascript

CodeQL libraries for JavaScript covers most of this library, and is also relevant for TypeScript analysis. This docu-
ment supplements the JavaScript documentation with the TypeScript-specific classes and predicates.

7.3.2 Syntax

Most syntax in TypeScript is represented in the same way as its JavaScript counterpart. For example, a+b is
represented by an AddExpr; the same as it would be in JavaScript. On the other hand, x as number is represented
by TypeAssertion, a class that is specific to TypeScript.

Type annotations
The TypeExpr class represents anything that is part of a type annotation.

Only type annotations that are explicit in the source code occur as a TypeExpr. Types inferred by the TypeScript
compiler are Type entities; for details about this, see the section on static type information.

There are several ways to access type annotations, for example:
* VariableDeclaration.getTypeAnnotation()
* Function.getReturnTypeAnnotation()
* BindingPattern.getTypeAnnotation()
* Parameter.getTypeAnnotation() (special case of BindingPattern.getTypeAnnotation())
* VarDecl.getTypeAnnotation() (special case of BindingPattern.getTypeAnnotation())
* FieldDeclaration.getTypeAnnotation()

The TypeExpr class provides some convenient member predicates such as isString() and isVoid () to recognize
commonly used types.

The subclasses that represent type annotations are:
* TypeAccess: a name referring to a type, such as Date or http.ServerRequest.
— LocalTypeAccess: an unqualified name, such as Date.
— QualifiedTypeAccess: a name prefixed by a namespace, such as http.ServerRequest.

— ImportTypeAccess: an import used as a type, such as import ("./foo").

232 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AddExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeAssertion.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalTypeAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar QualifiedTypeAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ImportTypeAccess.html

Learning CodeQL, Release 1.24

PredefinedTypeExpr: a predefined type, such as number, string, void, or any.
ThisTypeExpr: the this type.

InterfaceTypeExpr, also known as a literal type, such as {x: number}.
FunctionTypeExpr: a type such as (x: number) => string.
GenericTypeExpr: a named type with type arguments, such as Array<string>.
LiteralTypeExpr: a string, number, or boolean constant used as a type, such as 'foo"'.
ArrayTypeExpr: a type such as string[].

UnionTypeExpr: a type such as string | number.

IntersectionTypeExpr: a type suchas S & T.

IndexedAccessTypeExpr: a type such as T [X].

ParenthesizedTypeExpr: a type such as (string).

TupleTypeExpr: a type such as [string, number].

KeyofTypeExpr: a type such as keyof T.

TypeofTypeExpr: a type such as typeof x.

IsTypeExpr: a type such as x is string.

MappedTypeExpr: a type suchas{ [K in C]: T }.

There are some subclasses that may be part of a type annotation, but are not themselves types:

TypeParameter: a type parameter declared on a type or function, such as T in class C<T> {}.

NamespaceAccess: a name referring to a namespace from inside a type, such as http in http.
ServerRequest.

— LocalNamespaceAccess: the initial identifier in a prefix, such as http in http.ServerRequest.

— QualifiedNamespaceAccess: a qualified name in a prefix, such as net.client in net.client.
Connection.

— ImportNamespaceAccess: an import used as a namespace in a type, such as in import ("http").
ServerRequest.

VarTypeAccess: a reference to a value from inside a type, such as x in typeof x or x is string.

Function signatures

The Function class is a broad class that includes both concrete functions and function signatures.

Function signatures can take several forms:

Function types, such as (x: number) => string.

Abstract methods, such as abstract foo(): void.

Overload signatures, such as foo(x: number): number followed by an implementation of foo.
Call signatures, such asin { (x: string): number }.

Index signatures, such asin { [x: string]: number }.

7.3.

CodeQL library for TypeScript 233

https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar PredefinedTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ThisTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar InterfaceTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar FunctionTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar GenericTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LiteralTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ArrayTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar UnionTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar IntersectionTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar IndexedAccessTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ParenthesizedTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TupleTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar KeyofTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeofTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar IsTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar MappedTypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeParameter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalNamespaceAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar QualifiedNamespaceAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ImportNamespaceAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar VarTypeAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html

Learning CodeQL, Release 1.24

* Functions in an ambient context, such as declare function foo(x: number): string.

We recommend that you use the predicate Function.hasBody () to distinguish concrete functions from signa-
tures.

Type parameters

The TypeParameter class represents type parameters, and the TypeParameterized class represents entities that
can declare type parameters. Classes, interfaces, type aliases, functions, and mapped type expressions are all
TypeParameterized.

You can access type parameters using the following predicates:
* TypeParameterized.getTypeParameter(n) gets the nth declared type parameter.
e TypeParameter.getHost () gets the entity declaring a given type parameter.

You can access type arguments using the following predicates:
* GenericTypeExpr.getTypeArgument (n) gets the nth type argument of a type.

* TypeAccess.getTypeArgument (n) is a convenient alternative for the above (a TypeAccess with type ar-
guments is wrapped in a GenericTypeExpr).

* InvokeExpr.getTypeArgument (n) gets the nth type argument of a call.

* ExpressionWithTypeArguments.getTypeArgument (n) gets the nth type argument of a generic super-
class expression.

To select references to a given type parameter, use getLocalTypeName () (see Name binding below).

Examples

Select expressions that cast a value to a type parameter:

import javascript

from TypeParameter param, TypeAssertion assertion
where assertion.getTypeAnnotation() = param.getLocalTypeName() .getAnAccess()
select assertion, "Cast to type parameter."

See this in the query console on LGTM.com.

Classes and interfaces

The CodeQL class ClassOrInterface is a common supertype of classes and interfaces, and provides some TypeScript-
specific member predicates:

e ClassOrInterface.isAbstract() holds if this is an interface or a class with the abstract modifier.

* ClassOrInterface.getASuperInterface() gets a type from the implements clause of a class or from
the extends clause of an interface.

* ClassOrInterface.getACallSignature() gets a call signature of an interface, such as in { (arg:

string): number }.

* ClassOrInterface.getAnIndexSignature() gets an index signature, such as in { [key: string]:
number }.

234 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeParameter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeParameterized.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar GenericTypeExpr.html
https://lgtm.com/query/1505979606441/
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassOrInterface.html

Learning CodeQL, Release 1.24

* ClassOrInterface.getATypeParameter() gets a declared type parameter (special case of
TypeParameterized.getATypeParameter()).

Note that the superclass of a class is an expression, not a type annotation. If the superclass has type arguments,
it will be an expression of kind ExpressionWithTypeArguments.

Also see the documentation for classes in the CodeQL libraries for JavaScript.

To select the type references to a class or an interface, use getTypeName ().

Statements
The following are TypeScript-specific statements:
* NamespaceDeclaration: a statement such as namespace M {}.
e EnumbDeclaration: a statement such as enum Color { red, green, blue T
* TypeAliasDeclaration: a statement such as type A = number.
¢ InterfaceDeclaration: a statement such as interface Point { x: number; y: number; }.
e ImportEqualsDeclaration: a statement such as import fs = require("fs").
* ExportAssignDeclaration: a statement such as export = M.
* ExportAsNamespaceDeclaration: a statement such as export as namespace M.
* ExternalModuleDeclaration: a statement such as module "foo" {}.

* GlobalAugmentationDeclaration: a statement such as global {}

Expressions
The following are TypeScript-specific expressions:

* ExpressionWithTypeArguments: occurs when the extends clause of a class has type arguments, such as in
class C extends D<string>.

* TypeAssertion: asserts that a value has a given type, such as x as number or <number> x.
e NonNullAssertion: asserts that a value is not null or undefined, such as x!.

* ExternalModuleReference: a require call on the right-hand side of an import-assign, such as import fs
= require("fs").

Ambient declarations

Type annotations, interfaces, and type aliases are considered ambient AST nodes, as is anything with a declare
modifier.

The predicate ASTNode.isAmbient () can be used to determine if an AST node is ambient.

Ambient nodes are mostly ignored by control flow and data flow analysis. The outermost part of an ambient
declaration has a single no-op node in the control flow graph, and it has no internal control flow.

7.3. CodeQL library for TypeScript 235

https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExpressionWithTypeArguments.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar EnumDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeAliasDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar InterfaceDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ImportEqualsDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExportAssignDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExportAsNamespaceDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExternalModuleDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar GlobalAugmentationDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExpressionWithTypeArguments.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeAssertion.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NonNullAssertion.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExternalModuleReference.html

Learning CodeQL, Release 1.24

7.3.3 Static type information

Static type information and global name binding is available for projects with full TypeScript extraction enabled.
This option is enabled by default for projects on LGTM.com and when you create databases with the CodeQL CLI.

Note

If you are using the legacy QL command-line tools, you must enable full TypeScript extraction by
passing --typescript-full to the JavaScript extractor. For further information on customizing
calls to the extractor, see Customizing JavaScript extraction.

Without full extraction, the classes and predicates described in this section are empty.

Basic usage

The Type class represents a static type, such as number or string. The type of an expression can be obtained
with Expr.getType ().

Types that refer to a specific named type can be recognized in various ways:
* type. (TypeReference) .hasQualifiedName (name) holds if the type refers to the given named type.

* type.(TypeReference) .hasUnderlyingType (name) holds if the type refers to the given named type or
a transitive subtype thereof.

* type.hasUnderlyingType (name) is like the above, but additionally holds if the reference is wrapped in a
union and/or intersection type.

The hasQualifiedName and hasUnderlyingType predicates have two overloads:
* The single-argument version takes a qualified name relative to the global scope.

* The two-argument version takes the name of a module and qualified name relative to that module.

Example

The following query can be used to find all toString calls on a Node.js Buf fer object:

import javascript

from MethodCallExpr call

where call.getReceiver().getType() .hasUnderlyingType("Buffer")
and call.getMethodName() = "toString"

select call

Working with types

Type entities are not associated with a specific source location. For instance, there can be many uses of the number
keyword, but there is only one number type.

Some important member predicates of Type are:
* Type.getProperty(name) gets the type of a named property.
* Type.getMethod(name) gets the signature of a named method.
* Type.getSignature(kind,n) gets the nth overload of a call or constructor signature.

* Type.getStringIndexType() gets the type of the string index signature.

236 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/codeql/codeql-cli.html
https://help.semmle.com/wiki/display/SD/QL+command-line+tools
https://help.semmle.com/wiki/display/SD/Customizing+JavaScript+extraction
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar Type.html

Learning CodeQL, Release 1.24

* Type.getNumberIndexType () gets the type of the number index signature.

A Type entity always belongs to exactly one of the following subclasses:

* TypeReference: a named type, possibly with type arguments.
e UnionType: a union type such as string | number.

* IntersectionType: an intersection type suchas T & U.

* TupleType: a tuple type such as [string, number].

e StringType: the string type.

¢ NumberType: the number type.

* AnyType: the any type.

* NeverType: the never type.

* VoidType: the void type.

* NullType: the null type.

* UndefinedType: the undefined type.

* ObjectKeywordType: the object type.

¢ SymbolType: a symbol or unique symbol type.

* AnonymousInterfaceType: an anonymous type such as {x: number}.
* TypeVariableType: a reference to a type variable.

* ThisType: the this type within a specific type.

* TypeofType: the type of a named value, such as typeof X.

* BooleanLiteralType: the true or false type.

e StringliteralType: the type of a string constant.

e NumberLiteralType: the type of a number constant.

Additionally, Type has the following subclasses which overlap partially with those above:
* BooleanType: the type boolean, internally represented as the union type true | false.
* PromiseType: a type that describes a promise such as Promise<T>.

* ArrayType: a type that describes an array object, possibly a tuple type.
— PlainArrayType: a type of form Array<T>.
— ReadonlyArrayType: a type of form ReadonlyArray<T>.

e LiteralType: a boolean, string, or number literal type.

* NumberLikeType: the number type or a number literal type.

e StringlikeType: the string type or a string literal type.

* BooleanLikeType: the true, false, or boolean type.

7.3. CodeQL library for TypeScript 237

Learning CodeQL, Release 1.24

Canonical names and named types

CanonicalName is a CodeQL class representing a qualified name relative to a root scope, such as a module or the
global scope. It typically represents an entity such as a type, namespace, variable, or function. TypeName and
Namespace are subclasses of this class.

Canonical names can be recognized using the hasQualifiedName predicate:
* hasQualifiedName (name) holds if the qualified name is name relative to the global scope.
* hasQualifiedName (module,name) holds if the qualified name is name relative to the given module name.

For convenience, this predicate is also available on other classes, such as TypeReference and TypeofType, where
it forwards to the underlying canonical name.

Function types

There is no CodeQL class for function types, as any type with a call or construct signature is usable as a function.
The type CallSignatureType represents such a signature (with or without the new keyword).

Signatures can be obtained in several ways:

* Type.getFunctionSignature(n) gets the nth overloaded function signature.

* Type.getConstructorSignature(n) gets the nth overloaded constructor signature.

* Type.getLastFunctionSignature() gets the last declared function signature.

* Type.getLastConstructorSignature() gets the last declared constructor signature.
Some important member predicates of CallSignatureType are:

* CallSignatureType.getParameter(n) gets the type of the nth parameter.

* CallSignatureType.getParameterName(n) gets the name of the nth parameter.

* CallSignatureType.getReturnType () gets the return type.

Note that a signature is not associated with a specific declaration site.

Call resolution

Additional type information is available for invocation expressions:
* InvokeExpr.getResolvedCallee() gets the callee as a concrete Function.
* InvokeExpr.getResolvedCalleeName () get the callee as a canonical name.

* InvokeExpr.getResolvedSignature() gets the signature of the invoked function, with overloading re-
solved and type arguments substituted.

Note that these refer to the call target as determined by the type system. The actual call target may differ at
runtime, for instance, if the target is a method that has been overridden in a subclass.

Inheritance and subtyping
The declared supertypes of a named type can be obtained using TypeName . getABaseTypeName ().

This operates at the level of type names, hence the specific type arguments used in the inheritance chain are not
available. However, these can often be deduced using Type.getProperty or Type.getMethod which both take
inheritance into account.

238 Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

This only accounts for types explicitly mentioned in the extends or implements clause of a type. There is no
predicate that determines subtyping or assignability between types in general.

The following two predicates can be useful for recognising subtypes of a given type:

¢ Type.unfold() unfolds unions and/or intersection types and get the underlying types, or the type itself if
it is not a union or intersection.

* Type.hasUnderlyingType (name) holds if the type is a reference to the given named type, possibly after
unfolding unions/intersections and following declared supertypes.

Example

The following query can be used to find all classes that are React components, along with the type of their props
property, which generally coincides with its first type argument:

import javascript

from ClassDefinition cls, TypeName name
where name = cls.getTypeName ()

and name.getABaseTypeName+ () .hasQualifiedName ("React.Component")
select cls, name.getType() .getProperty("props")

7.3.4 Name binding

In TypeScript, names can refer to variables, types, and namespaces, or a combination of these.

These concepts are modeled as distinct entities: Variable, TypeName, and Namespace. For example, the class C
below introduces both a variable and a type:

class C {}
let x = C; // refers to the wariable C
let y: C; // refers to the type C

The variable C and the type C are modeled as distinct entities. One is a Variable, the other is a TypeName.

TypeScript also allows you to import types and namespaces, and give them local names in different scopes. For
example, the import below introduces a local type name B:

import {C as B} from "./foo"

The local name B is represented as a LocalTypeName named B, restricted to just the file containing the import.
An import statement can also introduce a Variable and a LocalNamespaceName.

The following table shows the relevant classes for working with each kind of name. The classes are described in
more detail below.

Kind Local alias Canonical name | Definition Access

Value Variable VarAccess

Type LocalTypeName TypeName TypeDefinition TypeAccess
Namespace | LocalNamespaceName | Namespace NamespaceDefinition | NamespaceAccess

7.3. CodeQL library for TypeScript 239

https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar Namespace.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalTypeName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalNamespaceName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalTypeName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalNamespaceName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar Namespace.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceAccess.html

Learning CodeQL, Release 1.24

Note: TypeName and Namespace are only populated if the database is generated using full TypeScript extraction.
LocalTypeName and LocalNamespaceName are always populated.

Type names

A TypeName is a qualified name for a type and is not bound to a specific lexical scope. The TypeDefinition class
represents an entity that defines a type, namely a class, interface, type alias, enum, or enum member. The relevant
predicates for working with type names are:

* TypeAccess.getTypeName () gets the qualified name being referenced (if any).

* TypeDefinition.getTypeName () gets the qualified name of a class, interface, type alias, enum, or enum
member.

* TypeName.getAnAccess (), gets an access to a given type.

* TypeName.getADefinition(), get a definition of a given type. Note that interfaces can have multiple
definitions.

A LocalTypeName behaves like a block-scoped variable, that is, it has an unqualified name and is restricted to a
specific scope. The relevant predicates are:

* LocalTypeAccess.getLocalTypeName () gets the local name referenced by an unqualified type access.
* LocalTypeName.getAnAccess() gets an access to a local type name.
* LocalTypeName.getADeclaration() gets a declaration of this name.

* LocalTypeName.getTypeName () gets the qualified name to which this name refers.

Examples

Find references that omit type arguments to a generic type.

It is best to use TypeName to resolve through imports and qualified names:

import javascript

from TypeDefinition def, TypeAccess access

where access.getTypeName() .getADefinition() = def
and def. (TypeParameterized) .hasTypeParameters()
and not access.hasTypeArguments ()

select access, "Type arguments are omitted"

See this in the query console on LGTM.com.

Find imported names that are used as both a type and a value:

import javascript

from ImportSpecifier spec
where exists (LocalTypeAccess access | access.getLocalTypeName().getADeclaration() = spec.
—~getLocal())

and exists (VarAccess access | access.getVariable().getADeclaration() = spec.getLocal())
select spec, "Used as both variable and type"

See this in the query console on LGTM.com.

240 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar TypeName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalTypeName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar TypeName.html
https://lgtm.com/query/1505985316500/
https://lgtm.com/query/1505975787348/

Learning CodeQL, Release 1.24

Namespace names

Namespaces are represented by the classes Namespace and LocalNamespaceName. The NamespaceDefinition
class represents a syntactic definition of a namespace, which includes ordinary namespace declarations as well as
enum declarations.

Note that these classes deal exclusively with namespaces referenced from inside type annotations, not through
expressions.

A Namespace is a qualified name for a namespace, and is not bound to a specific scope. The relevant predicates
for working with namespaces are:

* NamespaceAccess.getNamespace() gets the namespace being referenced by a namespace access.

* NamespaceDefinition.getNamespace() gets the namespace defined by a namespace or enum declara-
tion.

* Namespace.getAnAccess() gets an access to a namespace from inside a type.

* Namespace.getADefinition() gets a definition of this namespace. Note that namespaces can have mul-
tiple definitions.

* Namespace.getNamespaceMember (name) gets an inner namespace with a given name.
* Namespace.getTypeMember (name) gets a type exported under a given name.

* Namespace.getAnExportingContainer () gets a StmtContainer whose exports contribute to this names-
pace. This can be a the body of a namespace declaration or the top-level of a module. Enums have no
exporting containers.

A LocalNamespaceName behaves like a block-scoped variable, that is, it has an unqualified name and is restricted
to a specific scope. The relevant predicates are:

* LocalNamespaceAccess.getLocalNamespaceName () gets the local name referenced by an identifier.
* LocalNamespaceName.getAnAccess() gets an identifier that refers to this local name.
* LocalNamespaceName.getADeclaration() gets an identifier that declares this local name.

* LocalNamespaceName.getNamespace () gets the namespace to which this name refers.

7.3.5 Further reading
* CodeQL queries for JavaScript

* Example queries for JavaScript

CodeQL library reference for JavaScript
* QL language reference

¢ CodeQL tools

7.4 Analyzing data flow in JavaScript and TypeScript

This topic describes how data flow analysis is implemented in the CodeQL libraries for JavaScript/TypeScript and
includes examples to help you write your own data flow queries.

7.4. Analyzing data flow in JavaScript and TypeScript 241

https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar Namespace.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalNamespaceName.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/CanonicalNames.qll/type.CanonicalNames\protect \T1\textdollar Namespace.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/type.AST\protect \T1\textdollar StmtContainer.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar LocalNamespaceName.html
https://github.com/github/codeql/tree/master/javascript/ql/src
https://github.com/github/codeql/tree/master/javascript/ql/examples
https://help.semmle.com/qldoc/javascript/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

7.4.1 Overview

The various sections in this article describe how to utilize the libraries for local data flow, global data flow, and
taint tracking. As our running example, we will develop a query that identifies command-line arguments that are
passed as a file path to the standard Node.js readFile function. While this is not a problematic pattern as such,
it is typical of the kind of reasoning that is frequently used in security queries.

For a more general introduction to modeling data flow, see About data flow analysis.

7.4.2 Data flow nodes

Both local and global data flow, as well as taint tracking, work on a representation of the program known as the
data flow graph. Nodes on the data flow flow graph may also correspond to nodes on the abstract syntax tree,
but they are not the same. While AST nodes belong to class ASTNode and its subclasses, data flow nodes belong
to class DataFlow: :Node and its subclasses:

DataFlow: :ValueNode: a value node, that is, a data flow node that corresponds either to an expression, or
to a declaration of a function, class, TypeScript namespace, or TypeScript enum.

DataFlow: :SsaDefinitionNode: a data flow node that corresponds to an SSA variable, that is, a local
variable with additional information to reason more precisely about different assignments to the same
variable. This kind of data flow node does not correspond to an AST node.

DataFlow: :PropRef: a data flow node that corresponds to a read or a write of an object property, for
example, in an assignment, in an object literal, or in a destructuring assignment.

DataFlow: :PropRead, DataFlow: :PropWrite: subclasses of DataFlow: :PropRef that correspond to
reads and writes, respectively.

Apart from these fairly general classes, there are some more specialized classes:

DataFlow: :ParameterNode: a data flow node that corresponds to a function parameter.

DataFlow: :InvokeNode: a data flow node that corresponds to a function call; its subclasses
DataFlow: :NewNode and DataFlow: :CallNode represent calls with and without new respectively, while
DataFlow: :MethodCallNode represents method calls. Note that these classes also model reflective calls
using .call and .apply, which do not correspond to any AST nodes.

DataFlow: :ThisNode: a data flow node that corresponds to the value of this in a function or top level.
This kind of data flow node also does not correspond to an AST node.

DataFlow: :GlobalVarRefNode: a data flow node that corresponds to a direct reference to a global vari-
able. This class is rarely used directly, instead you would normally use the predicate globalVarRef (intro-
duced below), which also considers indirect references through window or global this.

DataFlow: :FunctionNode, DataFlow: :0ObjectLiteralNode, DataFlow: : ArrayLiteralNode: a data
flow node that corresponds to a function (expression or declaration), an object literal, or an array literal,
respectively.

DataFlow: :ClassNode: a data flow node corresponding to a class, either defined using an ECMAScript
2015 class declaration or an old-style constructor function.

DataFlow: :ModuleImportNode: a data flow node corresponding to an ECMAScript 2015 import or an
AMD or CommonJS require import.

The following predicates are available for mapping from AST nodes and other elements to their corresponding
data flow nodes:

242

Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

* DataFlow::valueNode(x): maps x, which must be an expression or a declaration of a function, class,
namespace or enum, to its corresponding DataFlow: : ValueNode.

* DataFlow::ssaDefinitionNode(ssa): maps an SSA definition ssa to its corresponding
DataFlow: :SsaDefinitionNode.

* DataFlow: :parameterNode(p): maps a function parameter p to its corresponding
DataFlow: :ParameterNode.

* DataFlow::thisNode(s): maps a function or top-level s to the DataFlow: : ThisNode representing the
value of this in s.

Class DataFlow::Node also has a member predicate asExpr() that you can use to map from a
DataFlow: :ValueNode to the expression it corresponds to. Note that this predicate is undefined for other kinds
of nodes, and for value nodes that do not correspond to expressions.

There are also some other predicates available for accessing commonly used data flow nodes:

* DataFlow::globalVarRef(g): gets a data flow node corresponding to an access to global vari-
able g, either directly or through window or (top-level) this. For example, you can use
DataFlow: :globalVarRef ("document") to find references to the DOM document object.

* DataFlow::moduleMember(p, m): gets a data flow node that references a member m of a module loaded
from path p. For example, you can use DataFlow: :moduleMember ("fs", "readFile") to find references
to the fs.readFile function from the Node.js standard library.

7.4.3 Local data flow

Local data flow is data flow within a single function. Data flow through function calls and returns or through
property writes and reads is not modeled.

Local data flow is faster to compute and easier to use than global data flow, but less complete. It is, however,
sufficient for many purposes.

To reason about local data flow, use the member predicates getAPredecessor and getASuccessor on
DataFlow: :Node. For a data flow node nd, nd.getAPredecessor() returns all data flow nodes from which
data flows to nd in one local step. Conversely, nd.getASuccessor () returns all nodes to which data flows from
nd in one local step.

To follow one or more steps of local data flow, use the transitive closure operator +, and for zero or more steps
the reflexive transitive closure operator *.

For example, the following query finds all data flow nodes source whose value may flow into the first argument
of a call to a method with name readFile:

import javascript

from DataFlow::MethodCallNode readFile, DataFlow: :Node source
where
readFile.getMethodName() = "readFile" and
source.getASuccessor*() = readFile.getArgument (0)
select source

7.4. Analyzing data flow in JavaScript and TypeScript 243

Learning CodeQL, Release 1.24

Source nodes

Explicit reasoning about data flow edges can be cumbersome and is rare in practice. Typically, we are not inter-
ested in flow originating from arbitrary nodes, but from nodes that in some sense are the source of some kind
of data, either because they create a new object, such as object literals or functions, or because they represent a
point where data enters the local data flow graph, such as parameters or property reads.

The data flow library represents such nodes by the class DataFlow: : SourceNode, which provides a convenient
API to reason about local data flow involving source nodes.

By default, the following kinds of data flow nodes are considered source nodes:
* classes, functions, object and array literals, regular expressions, and JSX elements
* property reads, global variable references and this nodes
* function parameters
* function calls
* imports
You can extend the set of source nodes by defining additional subclasses of DataFlow: : SourceNode: :Range.

The DataFlow: : SourceNode class defines a number of member predicates that can be used to track where data
originating from a source node flows, and to find places where properties are accessed or methods are called on
them.

For example, the following query finds all references to properties of process.argv, the array through which
Node.js applications receive their command-line arguments:

import javascript

select DataFlow::globalVarRef ("process") .getAPropertyRead("argv") .getAPropertyReference()

First, we use DataFlow: : globalVarRef (mentioned above) to find all references to the global variable process.
Since global variable references are source nodes, we can then use the predicate getAPropertyRead (defined
in class DataFlow: : SourceNode) to find all places where the property argv of that global variable is read. The
results of this predicate are again source nodes, so we can chain it with a call to getAPropertyReference, which
is a predicate that finds all references to any property (even references with a computed name) on its base source
node.

Note that many predicates on DataFlow: : SourceNode have source nodes as their result in turn, allowing calls
to be chained to concisely express the relationship between several data flow nodes.

Most importantly, predicates like getAPropertyRead implicitly follow local data flow, so the above query not
only finds direct property references like process.argv[2], but also more indirect ones as in this example:

var args = process.argv;
var firstArg = args[2];

Analogous to getAPropertyRead there is also a predicate getAPropertyWrite for identifying property writes.

Another common task is to find calls to a function originating from a source node. For this purpose,
DataFlow: :SourceNode offers predicates getACall, getAnInstantiation and getAnInvocation: the first
one only considers invocations without new, the second one only invocations with new, and the third one consid-
ers all invocations.

244 Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

We can use these predicates in combination with DataFlow: :moduleMember (mentioned above) to find calls to
the function readFile imported from the standard Node.js fs library:

import javascript

select DataFlow::moduleMember("fs", "readFile").getACall()

For identifying method calls there is also a predicate getAMethodCall, and the slightly more general
getAMemberCall. The difference between the two is that the former only finds calls that have the syntactic
shape of a method call such as x.m(. . .), while the latter also finds calls where x.m is first stored into a local
variable f and then invoked as £ (.. .).

Finally, the predicate flowsTo(nd) holds for any node nd into which data originating from the source node may
flow. Conversely, DataFlow: :Node offers a predicate getALocalSource () that can be used to find any source
node that flows to it.

Putting all of the above together, here is a query that finds (local) data flow from command line arguments to
readFile calls:

import javascript

from DataFlow: :SourceNode arg, DataFlow::CallNode call

where
arg = DataFlow::globalVarRef ("process") .getAPropertyRead("argv") .getAPropertyReference() and
call = DataFlow: :moduleMember("fs", "readFile").getACall() and
arg.flowsTo(call.getArgument (0))

select arg, call

There are two points worth making about the source node API:

1. All data flow tracking is purely local, and in particular flow through global variables is not tracked. If args
in our process.argv example above is a global variable, then the query will not find the reference through
args[2].

2. Strings are not source nodes and cannot be tracked using this API. You can, however, use the
mayHaveStringValue predicate on class DataFlow: :Node to reason about the possible string values flow-
ing into a data flow node.

For a full description of the DataFlow: : SourceNode API, see the JavaScript standard library.

Exercises

Exercise 1: Write a query that finds all hard-coded strings used as the tagName argument to the createElement
function from the DOM document object, using local data flow. (Answer).

7.4.4 Global data flow

Global data flow tracks data flow throughout the entire program, and is therefore more powerful than local data
flow. However, global data flow is less precise than local data flow. That is, the analysis may report spurious
flows that cannot in fact happen. Moreover, global data flow analysis typically requires significantly more time
and memory than local analysis.

Note

7.4. Analyzing data flow in JavaScript and TypeScript 245

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html

Learning CodeQL, Release 1.24

You can model data flow paths in CodeQL by creating path queries. To view data flow paths generated
by a path query in CodeQL for VS Code, you need to make sure that it has the correct metadata and
select clause. For more information, see Creating path queries.

Using global data flow

For performance reasons, it is not generally feasible to compute all global data flow across the entire program.
Instead, you can define a data flow configuration, which specifies source data flow nodes and sink data flow nodes
(sources and sinks for short) of interest. The data flow library provides a generic data flow solver that can check
whether there is (global) data flow from a source to a sink.

Optionally, configurations may specify extra data flow edges to be added to the data flow graph, and may also
specify barriers. Barriers are data flow nodes or edges through which data should not be tracked for the purposes
of this analysis.

To define a configuration, extend the class DataFlow: : Configuration as follows:

class MyDataFlowConfiguration extends DataFlow::Configuration {
MyDataFlowConfiguration() { this = "MyDataFlowConfiguration" }

override predicate isSource(DataFlow::Node source) { /* ... */ }
override predicate isSink(DataFlow::Node sink) { /* ... */ }

// optional overrides:

override predicate isBarrier(DataFlow::Node nd) { /* ... */ }

override predicate isBarrierEdge(DataFlow::Node pred, DataFlow::Node succ) { /* ... */ }

override predicate isAdditionalFlowStep(DataFlow::Node pred, DataFlow::Node succ) { /* ... */ }
}

The characteristic predicate MyDataFlowConfiguration() defines the name of the configuration, so
"MyDataFlowConfiguration" should be replaced by a suitable name describing your particular analysis con-
figuration.

The data flow analysis is performed using the predicate hasFlow(source, sink):

from MyDataFlowConfiguration dataflow, DataFlow::Node source, DataFlow::Node sink
where dataflow.hasFlow(source, sink)
select source, "Data flow from $@ to $0.", source, source.toString(), sink, sink.toString()

Using global taint tracking

Global taint tracking extends global data flow with additional non-value-preserving steps, such as flow
through string-manipulating operations. To use it, simply extend TaintTracking: :Configuration instead of
DataFlow: :Configuration:

class MyTaintTrackingConfiguration extends TaintTracking::Configuration {
MyTaintTrackingConfiguration() { this = "MyTaintTrackingConfiguration" }

override predicate isSource(DataFlow::Node source) { /* ... */ }

(continues on next page)

246 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/QL/learn-ql/writing-queries/path-queries.html

Learning CodeQL, Release 1.24

(continued from previous page)

override predicate isSink(DataFlow::Node sink) { /* ... */ }
}

Analogous to isAdditionalFlowStep, there is a predicate isAdditionalTaintStep that you can override to
specify custom flow steps to consider in the analysis. Instead of the isBarrier and isBarrierEdge predicates,
the taint tracking configuration includes isSanitizer and isSanitizerEdge predicates that specify data flow
nodes or edges that act as taint sanitizers and hence stop flow from a source to a sink.

Similar to global data flow, the characteristic predicate MyTaintTrackingConfiguration() defines the unique
name of the configuration, so "MyTaintTrackingConfiguration" should be replaced by an appropriate de-
scriptive name.

The taint tracking analysis is again performed using the predicate hasFlow(source, sink).

Examples

The following taint-tracking configuration is a generalization of our example query above, which tracks flow from
command-line arguments to readFile calls, this time using global taint tracking.

import javascript

class CommandLineFileNameConfiguration extends TaintTracking::Configuration {
CommandLineFileNameConfiguration() { this = "CommandLineFileNameConfiguration" }

override predicate isSource(DataFlow::Node source) {
DataFlow: :globalVarRef ("process") .getAPropertyRead("argv") .getAPropertyRead() = source
}

override predicate isSink(DataFlow::Node sink) {
DataFlow: :moduleMember ("fs", "readFile").getACall().getArgument(0) = sink
}

from CommandLineFileNameConfiguration cfg, DataFlow::Node source, DataFlow::Node sink
where cfg.hasFlow(source, sink)
select source, sink

This query will now find flows that involve inter-procedural steps, like in the following example (where the
individual steps have been marked with comments #1 to #4):

const fs = require('fs'),
path = require('path');

function readFileHelper (p) { /7 #2
p = path.resolve(p); // #3
fs.readFile(p, /7 #

'utf8', (err, data) => {
if (err) throw err;
console.log(data);
b;
}

(continues on next page)

7.4. Analyzing data flow in JavaScript and TypeScript 247

Learning CodeQL, Release 1.24

(continued from previous page)

readFileHelper(process.argv[2]); // #1

Note that for step #3 we rely on the taint-tracking librarys built-in model of the Node.js path library, which adds
a taint step from p to path.resolve(p). This step is not value preserving, but it preserves taint in the sense that
if p is user-controlled, then so is path.resolve(p) (at least partially).

Other standard taint steps include flow through string-manipulating operations such as concatenation, JSON.
parse and JSON.stringify, array transformations, promise operations, and many more.

Sanitizers

The above JavaScript program allows the user to read any file, including sensitive system files like /etc/passwd.
If the program may be invoked by an untrusted user, this is undesirable, so we may want to constrain the path.
For example, instead of using path.resolve we could implement a function checkPath that first makes the path
absolute and then checks that it starts with the current working directory, aborting the program with an error if
it does not. We could then use that function in readFileHelper like this:

function readFileHelper(p) {
p = checkPath(p);

For the purposes of our above analysis, checkPath is a sanitizer: its output is always untainted, even if its input
is tainted. To model this we can add an override of isSanitizer to our taint-tracking configuration like this:

class CommandLineFileNameConfiguration extends TaintTracking::Configuration {
/.

override predicate isSanitizer(DataFlow::Node nd) {
nd. (DataFlow: :CallNode) .getCalleeName() = "checkPath"
}

This says that any call to a function named checkPath is to be considered a sanitizer, so any flow through this
node is blocked. In particular, the query would no longer flag the flow from process.argv[2] to fs.readFile
in our updated example above.

Sanitizer guards

A perhaps more natural way of implementing the path check in our example would be to have checkPath return
a Boolean value indicating whether the path is safe to read (instead of returning the path if it is safe and aborting
otherwise). We could then use it in readFileHelper like this:

function readFileHelper(p) {
if (!checkPath(p))
return;

248 Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

Note that checkPath is now no longer a sanitizer in the sense described above, since the flow from process.
argv[2] to fs.readFile does not go through checkPath any more. The flow is, however, guarded by checkPath
in the sense that the expression checkPath(p) has to evaluate to true (or, more precisely, to a truthy value) in
order for the flow to happen.

Such sanitizer guards can be supported by defining a new subclass of TaintTracking: : SanitizerGuardNode
and overriding the predicate isSanitizerGuard in the taint-tracking configuration class to add all instances of
this class as sanitizer guards to the configuration.

For our above example, we would begin by defining a subclass of SanitizerGuardNode that identifies guards of
the form checkPath(...):

class CheckPathSanitizerGuard extends TaintTracking::SanitizerGuardNode, DataFlow::CallNode {
CheckPathSanitizerGuard() { this.getCalleeName() = "checkPath" }

override predicate sanitizes(boolean outcome, Expr e) {
outcome = true and
e = getArgument (0) .asExpr()

}

The characteristic predicate of this class checks that the sanitizer guard is a call to a function named checkPath.
The overriding definition of sanitizes says such a call sanitizes its first argument (that is, getArgument (0)) if
it evaluates to true (or rather, a truthy value).

Now we can override isSanitizerGuard to add these sanitizer guards to our configuration:

class CommandLineFileNameConfiguration extends TaintTracking::Configuration {
Zane

override predicate isSanitizerGuard(TaintTracking::SanitizerGuardNode nd) {
nd instanceof CheckPathSanitizerGuard

With these two additions, the query recognizes the checkPath(p) check as sanitizing p after the return, since
execution can only reach there if checkPath(p) evaluates to a truthy value. Consequently, there is no longer a
path from process.argv[2] to readFile.

Additional taint steps

Sometimes the default data flow and taint steps provided by DataFlow::Configuration and
TaintTracking: :Configuration are not sufficient and we need to add additional flow or taint steps to
our configuration to make it find the expected flow. For example, this can happen because the analyzed program
uses a function from an external library whose source code is not available to the analysis, or because it uses a
function that is too difficult to analyze.

In the context of our running example, assume that the JavaScript program we are analyzing uses a (fictitious)
npm package resolve-symlinks to resolve any symlinks in the path p before passing it to readFile:

7.4. Analyzing data flow in JavaScript and TypeScript 249

Learning CodeQL, Release 1.24

const resolveSymlinks = require('resolve-symlinks');

function readFileHelper(p) {
p = resolveSymlinks(p);
fs.readFile(p,

Resolving symlinks does not make an unsafe path any safer, so we would still like our query to flag this, but since
the standard library does not have a model of resolve-symlinks it will no longer return any results.

We can fix this quite easily by adding an overriding definition of the isAdditionalTaintStep predicate to our
configuration, introducing an additional taint step from the first argument of resolveSymlinks to its result:

class CommandLineFileNameConfiguration extends TaintTracking::Configuration {
Y/

override predicate isAdditionalTaintStep(DataFlow::Node pred, DataFlow::Node succ) {
exists(DataFlow: :CallNode c |
¢ = DataFlow: :moduleImport("resolve-symlinks").getACall() and
pred = c.getArgument(0) and
succ = ¢

We might even consider adding this as a default taint step to be used by all taint-tracking configurations. In order
to do this, we need to wrap it in a new subclass of TaintTracking: : AdditionalTaintStep like this:

class StepThroughResolveSymlinks extends TaintTracking::AdditionalTaintStep, DataFlow::CallNode {
StepThroughResolveSymlinks() { this = DataFlow: :moduleImport("resolve-symlinks").getACall() }

override predicate step(DataFlow::Node pred, DataFlow::Node succ) {
pred = this.getArgument(0) and

succ = this

If we add this definition to the standard library, it will be picked up by all taint-tracking configurations. Obviously,
one has to be careful when adding such new additional taint steps to ensure that they really make sense for all
configurations.

Analogous to TaintTracking: :AdditionalTaintStep, there is also a class DataFlow: : AdditionalFlowStep
that can be extended to add extra steps to all data-flow configurations, and hence also to all taint-tracking con-
figurations.

Exercises

Exercise 2: Write a query that finds all hard-coded strings used as the tagName argument to the createElement
function from the DOM document object, using global data flow. (Answer).

250 Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

Exercise 3: Write a class which represents flow sources from the array elements of the result of a call, for example
the expression myObject .myMethod (myArgument) [myIndex]. Hint: array indices are properties with numeric
names; you can use regular expression matching to check this. (Answer)

Exercise 4: Using the answers from 2 and 3, write a query which finds all global data flows from array elements
of the result of a call to the tagName argument to the createElement function. (Answer)

7.4.5 Answers

Exercise 1

import javascript

from DataFlow::CallNode create, string name

where
create = DataFlow::globalVarRef ("document") .getAMethodCall("createElement") and
create.getArgument (0) .mayHaveStringValue (name)

select name

Exercise 2

import javascript

class HardCodedTagNameConfiguration extends DataFlow::Configuration {
HardCodedTagNameConfiguration() { this = "HardCodedTaglNameConfiguration" }

override predicate isSource(DataFlow::Node source) { source.asExpr() instanceof ConstantString }

override predicate isSink(DataFlow::Node sink) {
sink = DataFlow::globalVarRef ("document").getAMethodCall("createElement") .getArgument (0)
}

from HardCodedTagNameConfiguration cfg, DataFlow::Node source, DataFlow::Node sink
where cfg.hasFlow(source, sink)
select source, sink

Exercise 3

import javascript

class ArrayEntryCallResult extends DataFlow::Node {
ArrayEntryCallResult() {
exists(DataFlow: :CallNode call, string index |
this = call.getAPropertyRead(index) and
index.regexpMatch("\\d+")

7.4. Analyzing data flow in JavaScript and TypeScript 251

Learning CodeQL, Release 1.24

Exercise 4

import javascript

class ArrayEntryCallResult extends DataFlow::Node {
ArrayEntryCallResult() {
exists(DataFlow: :CallNode call, string index |
this = call.getAPropertyRead(index) and
index.regexpMatch("\\d+")

class HardCodedTagNameConfiguration extends DataFlow::Configuration {
HardCodedTagNameConfiguration() { this = "HardCodedTagNameConfiguration" }

override predicate isSource(DataFlow::Node source) { source instanceof ArrayEntryCallResult }

override predicate isSink(DataFlow::Node sink) {
sink = DataFlow::globalVarRef ("document") .getAMethodCall("createElement") .getArgument (0)
}

from HardCodedTagNameConfiguration cfg, DataFlow::Node source, DataFlow::Node sink
where cfg.hasFlow(source, sink)
select source, sink

7.4.6 Further reading
* Exploring data flow with path queries
* CodeQL queries for Java

* Example queries for Java

CodeQL library reference for Java
* QL language reference

¢ CodeQL tools

Contents

* Using flow labels for precise data flow analysis

Overview

Limitations of basic data-flow analysis

Using flow labels

Example

- API

Standard queries using flow labels

252 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql/tree/master/java/ql/src
https://github.com/github/codeql/tree/master/java/ql/examples
https://help.semmle.com/qldoc/java/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

— Further reading I

7.5 Using flow labels for precise data flow analysis

You can associate flow labels with each value tracked by the flow analysis to determine whether the flow contains
potential vulnerabilities.

7.5.1 Overview

You can use basic inter-procedural data-flow analysis and taint tracking as described in Analyzing data flow in
JavaScript and TypeScript to check whether there is a path in the data-flow graph from some source node to a
sink node that does not pass through any sanitizer nodes. Another way of thinking about this is that it statically
models the flow of data through the program, and associates a flag with every data value telling us whether it
might have come from a source node.

In some cases, you may want to track more detailed information about data values. This can be done by associating
flow labels with data values, as shown in this tutorial. We will first discuss the general idea behind flow labels
and then show how to use them in practice. Finally, we will give an overview of the API involved and provide
some pointers to standard queries that use flow labels.

7.5.2 Limitations of basic data-flow analysis

In many applications we are interested in tracking more than just the reachability information provided by inter-
procedural data flow analysis.

For example, when tracking object values that originate from untrusted input, we might want to remember
whether the entire object is tainted or whether only part of it is tainted. The former happens, for example,
when parsing a user-controlled string as JSON, meaning that the entire resulting object is tainted. A typical ex-
ample of the latter is assigning a tainted value to a property of an object, which only taints that property but not
the rest of the object.

While reading a property of a completely tainted object yields a tainted value, reading a property of a partially
tainted object does not. On the other hand, JSON-encoding even a partially tainted object and including it in an
HTML document is not safe.

Another example where more fine-grained information about tainted values is needed is for tracking partial san-
itization. For example, before interpreting a user-controlled string as a file-system path, we generally want to
make sure that it is neither an absolute path (which could refer to any file on the file system) nor a relative path
containing .. components (which still could refer to any file). Usually, checking both of these properties would
involve two separate checks. Both checks taken together should count as a sanitizer, but each individual check is
not by itself enough to make the string safe for use as a path. To handle this case precisely, we want to associate
two bits of information with each tainted value, namely whether it may be absolute, and whether it may contain

. components. Untrusted user input has both bits set initially, individual checks turn off individual bits, and if a
value that has at least one bit set is interpreted as a path, a potential vulnerability is flagged.

7.5.3 Using flow labels

You can handle these cases and others like them by associating a set of flow labels (sometimes also referred to as
taint kinds) with each value being tracked by the analysis. Value-preserving data-flow steps (such as flow steps
from writes to a variable to its reads) preserve the set of flow labels, but other steps may add or remove flow

7.5. Using flow labels for precise data flow analysis 253

Learning CodeQL, Release 1.24

labels. Sanitizers, in particular, are simply flow steps that remove some or all flow labels. The initial set of flow
labels for a value is determined by the source node that gives rise to it. Similarly, sink nodes can specify that an
incoming value needs to have a certain flow label (or one of a set of flow labels) in order for the flow to be flagged
as a potential vulnerability.

7.5.4 Example

As an example of using flow labels, we will show how to write a query that flags property accesses on JSON values
that come from user-controlled input where we have not checked whether the value is null, so that the property
access may cause a runtime exception.

For example, we would like to flag this code:

var data = JSON.parse(str);
if (data.length > 0) { // problematic: “data” may be “null’

This code, on the other hand, should not be flagged:

var data = JSON.parse(str);
if (data && data.length > 0) { // unproblematic: “data’ is first checked for nullness

We will first try to write a query to find this kind of problem without flow labels, and use the difficulties we
encounter as a motivation for bringing flow labels into play, which will make the query much easier to implement.

To get started, lets write a query that simply flags any flow from JSON.parse into the base of a property access:

import javascript

class JsonTrackingConfig extends DataFlow::Configuration {
JsonTrackingConfig() { this = "JsonTrackingConfig" }

override predicate isSource(DataFlow::Node nd) {
exists(JsonParserCall jpc |
nd = jpc.getOutput()
)

override predicate isSink(DataFlow::Node nd) {
exists(DataFlow: :PropRef pr |
nd = pr.getBase()
)

from JsonTrackingConfig cfg, DataFlow::Node source, DataFlow::Node sink
where cfg.hasFlow(source, sink)
select sink, "Property access on JSON value originating $@.", source, "here"

254 Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

Note that we use the JsonParserCall class from the standard library to model various JSON parsers, including
the standard JSON.parse API as well as a number of popular npm packages.

Of course, as written this query flags both the good and the bad example above, since we have not introduced
any sanitizers yet.

There are many ways of checking for nullness directly or indirectly. Since this is not the main focus of this tutorial,
we will only show how to model one specific case: if some variable v is known to be truthy, it cannot be null.
This kind of condition is easily expressed using a BarrierGuardNode (or its counterpart SanitizerGuardNode
for taint-tracking configurations). A barrier guard node is a data-flow node b that blocks flow through some other
node nd, provided that some condition checked at b is known to hold, that is, evaluate to a truthy value.

In our case, the barrier guard node is a use of some variable v, and the condition is that use itself: it blocks flow
through any use of v where the guarding use is known to evaluate to a truthy value. In our second example
above, the use of data on the left-hand side of the && is a barrier guard blocking flow through the use of data
on the right-hand side of the &&. At this point we know that data has evaluated to a truthy value, so it cannot be
null anymore.

Implementing this additional condition is easy. We implement a subclass of DataFlow: :BarrierGuardNode:

class TruthinessCheck extends DataFlow::BarrierGuardNode, DataFlow::ValueNode {

SsaVariable v;

TruthinessCheck() {
astNode = v.getAUse()

override predicate blocks(boolean outcome, Expr e) {
outcome = true and
e = astNode

and then use it to override predicate isBarrierGuard in our configuration class:

override predicate isBarrierGuard(DataFlow::BarrierGuardNode guard) {
guard instanceof TruthinessCheck

}

With this change, we now flag the problematic case and dont flag the unproblematic case above.

However, as it stands our analysis has many false negatives: if we read a property of a JSON object, our analysis
will not continue tracking it, so property accesses on the resulting value will not be checked for null-guardedness:

var root = JSON.parse(str);

if (root) {
var payload = root.data; // unproblematic: “root” cannot be ‘null” here
if (payload.length > 0) { // problematic: “payload’ may be “null’ here

We could try to remedy the situation by overriding isAdditionalFlowStep in our configuration class to track
values through property reads:

7.5. Using flow labels for precise data flow analysis 255

Learning CodeQL, Release 1.24

override predicate isAdditionalFlowStep(DataFlow::Node pred, DataFlow::Node succ) {
succ. (DataFlow: :PropRead) .getBase() = pred
}

But this does not actually allow us to flag the problem above as once we have checked root for truthiness, all
further uses are considered to be sanitized. In particular, the reference to root in root.data is sanitized, so no
flow tracking through the property read happens.

The problem is, of course, that our sanitizer sanitizes too much. It should not stop flow altogether, it should
simply record the fact that root itself is known to be non-null. Any property read from root, on the other hand,
may well be null and needs to be checked separately.

We can achieve this by introducing two different flow labels, json and maybe-null. The former means that
the value we are dealing with comes from a JSON object, the latter that it may be null. The result of any call
to JSON.parse has both labels. A property read from a value with label json also has both labels. Checking
truthiness removes the maybe-null label. Accessing a property on a value that has the maybe-null label should
be flagged.

To implement this, we start by defining two new subclasses of the class DataFlow: :FlowLabel:

class JsonLabel extends DataFlow::FlowLabel {
JsonLabel() {
this = "json"

class MaybeNullLabel extends DataFlow::FlowLabel {
MaybeNullLabel() {
this = "maybe-null"

Then we extend our isSource predicate from above to track flow labels by overriding the two-argument version
instead of the one-argument version:

override predicate isSource(DataFlow::Node nd, DataFlow::FlowLabel 1bl) {
exists(JsonParserCall jpc |
nd = jpc.getOutput() and
(1bl instanceof JsonLabel or 1bl instanceof MaybeNullLabel)

Similarly, we make isSink flow-label aware and require the base of the property read to have the maybe-null
label:

override predicate isSink(DataFlow::Node nd, DataFlow::FlowLabel 1bl) {
exists(DataFlow: :PropRef pr |
nd = pr.getBase() and
1bl instanceof MaybeNullLabel

256 Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

Our overriding definition of isAdditionalFlowStep now needs to specify two flow labels, a predecessor label
predlbl and a successor label succlbl. In addition to specifying flow from the predecessor node pred to the
successor node succ, it requires that pred has label pred1bl, and adds label succlbl to succ. In our case, we
use this to add both the json label and the maybe-null label to any property read from a value labeled with
json (no matter whether it has the maybe-null label):

override predicate isAdditionalFlowStep(DataFlow::Node pred, DataFlow::Node succ,
DataFlow: :FlowLabel predlbl, DataFlow::FlowLabel succlbl) {
succ. (DataFlow: :PropRead) .getBase() = pred and
predlbl instanceof JsonLabel and
(succlbl instanceof JsonLabel or succlbl instanceof MaybeNullLabel)
}

Finally, we turn TruthinessCheck from a BarrierGuardNode into a LabeledBarrierGuardNode, specifying
that it only removes the maybe-null label (but not the json label) from the sanitized value:

class TruthinessCheck extends DataFlow::LabeledBarrierGuardNode, DataFlow::ValueNode {

override predicate blocks(boolean outcome, Expr e, DataFlow::FlowLabel 1bl) {
outcome = true and
e = astNode and
1bl instanceof MaybeNullLabel

}

Here is the final query, expressed as a path query so we can examine paths from sources to sinks step by step in
the UL:

/*% @kind path-problem */

import javascript
import DataFlow::PathGraph

class JsonLabel extends DataFlow::FlowLabel {
JsonLabel () {
this = "json"

class MaybeNullLabel extends DataFlow::FlowLabel {
MaybeNullLabel() {
this = "maybe-null"

class TruthinessCheck extends DataFlow::LabeledBarrierGuardNode, DataFlow::ValueNode {

SsaVariable v;

TruthinessCheck() {
astNode = v.getAUse()

(continues on next page)

7.5. Using flow labels for precise data flow analysis 257

Learning CodeQL, Release 1.24

(continued from previous page)

override predicate blocks(boolean outcome, Expr e, DataFlow::FlowLabel 1bl) {
outcome = true and
e = astNode and
1bl instanceof MaybeNullLabel

}

class JsonTrackingConfig extends DataFlow::Configuration {
JsonTrackingConfig() { this = "JsonTrackingConfig" }

override predicate isSource(DataFlow::Node nd, DataFlow::FlowLabel 1bl) {
exists(JsonParserCall jpc |
nd = jpc.getOutput() and
(1bl instanceof JsonLabel or 1bl instanceof MaybeNullLabel)

override predicate isSink(DataFlow::Node nd, DataFlow::FlowLabel 1bl) {
exists(DataFlow: :PropRef pr |
nd = pr.getBase() and
1bl instanceof MaybeNullLabel

override predicate isAdditionalFlowStep(DataFlow::Node pred, DataFlow::Node succ,
DataFlow: :FlowLabel predlbl, DataFlow::FlowLabel succlbl) {
succ. (DataFlow: :PropRead) .getBase() = pred and
predlbl instanceof JsonLabel and
(succlbl instanceof JsonLabel or succlbl instanceof MaybeNullLabel)

}

override predicate isBarrierGuard(DataFlow::BarrierGuardNode guard) {
guard instanceof TruthinessCheck

}

from JsonTrackingConfig cfg, DataFlow::PathNode source, DataFlow::PathNode sink
where cfg.hasFlowPath(source, sink)
select sink, source, sink, "Property access on JSON value originating $0.", source, "here"

Here is a run of this query on the plexus-interop project on LGTM.com. Many of the 19 results are false positives
since we currently do not model many ways in which a value can be checked for nullness. In particular, after a
property reference x.p we implicitly know that x cannot be null anymore, since otherwise the reference would
have thrown an exception. Modeling this would allow us to get rid of most of the false positives, but is beyond
the scope of this tutorial.

7.5.5 API

Plain data-flow configurations implicitly use a single flow label data, which indicates that a data value originated
from a source. You can use the predicate DataFlow: :FlowLabel: :data(), which returns this flow label, as a

258 Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/5347702611074820306
https://lgtm.com/projects/g/finos-plexus/plexus-interop/

Learning CodeQL, Release 1.24

symbolic name for it.

Taint-tracking configurations add a second flow label taint (DataFlow: :FlowLabel: :taint ()), which is similar
to data, but includes values that have passed through non-value preserving steps such as string operations.

Each of the three member predicates isSource, isSink and isAdditionalFlowStep/isAdditionalTaintStep
has one version that uses the default flow labels, and one version that allows specifying custom flow labels through
additional arguments.

For isSource, there is one additional argument specifying which flow label(s) should be associated with values
originating from this source. If multiple flow labels are specified, each value is associated with all of them.

For isSink, the additional argument specifies which flow label(s) a value that flows into this source may be
associated with. If multiple flow labels are specified, then any value that is associated with at least one of them
will be considered by the configuration.

For isAdditionalFlowStep there are two additional arguments pred1lbl and succlbl, which allow flow steps
to act as flow label transformers. If a value associated with predlbl arrives at the start node of the additional
step, it is propagated to the end node and associated with succlbl. Of course, predlbl and succlbl may be
the same, indicating that the flow step preserves this label. There can also be multiple values of succlbl for a
single pred1bl or vice versa.

Note that if you do not restrict succlbl then it will be allowed to range over all flow labels. This may cause labels
that were previously blocked on a path to reappear, which is not usually what you want.

The flow label-aware version of isBarrier is called isLabeledBarrier: unlike isBarrier, which prevents any
flow past the given node, it only blocks flow of values associated with one of the specified flow labels.

7.5.6 Standard queries using flow labels

Some of our standard security queries use flow labels. You can look at their implementation to get a feeling for
how to use flow labels in practice.

In particular, both of the examples mentioned in the section on limitations of basic data flow above are from

standard security queries that use flow labels. The Prototype pollution query uses two flow labels to distinguish

completely tainted objects from partially tainted objects. The Uncontrolled data used in path expression query

uses four flow labels to track whether a user-controlled string may be an absolute path and whether it may contain
. components.

7.5.7 Further reading
¢ Exploring data flow with path queries
* CodeQL queries for JavaScript
* Example queries for JavaScript
* CodeQL library reference for JavaScript
* QL language reference

¢ CodeQL tools

7.6 Using type tracking for APl modeling

You can track data through an API by creating a model using the CodeQL type-tracking library for JavaScript.

7.6. Using type tracking for APl modeling 259

https://lgtm.com/rules/1508857356317
https://lgtm.com/rules/1971530250
https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql/tree/master/javascript/ql/src
https://github.com/github/codeql/tree/master/javascript/ql/examples
https://help.semmle.com/qldoc/javascript/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

7.6.1 Overview

The type-tracking library makes it possible to track values through properties and function calls, usually to rec-
ognize method calls and properties accessed on a specific type of object.

This is an advanced topic and is intended for readers already familiar with the SourceNode class as well as taint
tracking. For TypeScript analysis also consider reading about static type information first.

7.6.2 The problem of recognizing method calls

Well start with a simple model of the Firebase API and gradually build on it to use type tracking. Knowledge of
Firebase is not required.

Suppose we wish to find places where data is written to a Firebase database, as in the following example:

var ref = firebase.database().ref("forecast");
ref.set("Rain"); // <-- find this call

A simple way to do this is just to find all method calls named set:

import javascript
import DataFlow

MethodCallNode firebaseSetterCall() {
result.getMethodName() = "set"
}

The obvious problem with this is that it finds calls to all methods named set, many of which are unrelated to
Firebase.

Another approach is to use local data flow to match the chain of calls that led to this call:

MethodCallNode firebaseSetterCall() {
result = globalVarRef ("firebase")
.getAMethodCall("database")
.getAMethodCall("ref")
.getAMethodCall("set")

This will find the set call from the example, but no spurious, unrelated set method calls. We can split it up so
each step is its own predicate:

SourceNode firebase() {
result = globalVarRef ("firebase")
}

SourceNode firebaseDatabase() {
result = firebase().getAMethodCall("database")
}

SourceNode firebaseRef() {
result = firebaseDatabase().getAMethodCall("ref");
}

(continues on next page)

260 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/QL/learn-ql/javascript/dataflow.html#source-nodes
https://help.semmle.com/QL/learn-ql/javascript/dataflow.html#using-global-taint-tracking
https://help.semmle.com/QL/learn-ql/javascript/dataflow.html#using-global-taint-tracking
https://help.semmle.com/QL/learn-ql/javascript/introduce-libraries-ts.html#static-type-information
https://firebase.google.com/docs/reference/js/firebase.database

Learning CodeQL, Release 1.24

(continued from previous page)

MethodCallNode firebaseSetterCall() {
result = firebaseRef().getAMethodCall("set")
}

The code above is equivalent to the previous version, but its easier to tinker with the individual steps.

The downside is that the model relies entirely on local data flow, which means it wont look through properties
and function calls. For instance, firebaseSetterCall () fails to find anything in this example:

function getDatabase() {
return firebase.database();
}
var ref = getDatabase().ref("forecast");
ref.set("Rain");

Notice that the predicate firebaseDatabase() still finds the call to firebase.database(), but not the
getDatabase () call. This means firebaseRef () has no result, which in turn means firebaseSetterCall()
has no result.

As a simple remedy, lets try to make firebaseDatabase () recognize the getDatabase() call:

SourceNode firebaseDatabase() {

result = firebase().getAMethodCall("database")

or

result. (CallNode) .getACallee() .getAReturn() .getALocalSource() = firebaseDatabase()
}

The second clause ensures firebaseDatabase() finds not only firebase.database() calls, but also calls to
functions that return firebase.database(), such as getDatabase() seen above. Its recursive, so it handles
flow out of any number of nested function calls.

However, it still only tracks out of functions, not into functions through parameters, nor through properties.
Instead of adding these steps by hand, well use type tracking.

7.6.3 Type tracking in general

Type tracking is a generalization of the above pattern, where a predicate matches the value to track, and has a
recursive clause that tracks the flow of that value. But instead of us having to deal with function calls/returns
and property reads/writes, all of these steps are included in a single predicate, SourceNode.track, to be used with
the companion class TypeTracker.

Predicates that use type tracking usually conform to the following general pattern, which we explain below:

SourceNode myType(TypeTracker t) {
t.start() and
result = /* SourceNode to track */
or
exists(TypeTracker t2 |
result = myType(t2).track(t2, t)

(continues on next page)

7.6. Using type tracking for APl modeling 261

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar track.2.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/TypeTracking.qll/type.TypeTracking\protect \T1\textdollar TypeTracker.html

Learning CodeQL, Release 1.24

(continued from previous page)

SourceNode myType() {
result = myType(TypeTracker: :end())

Well apply the pattern to our example model and use that to explain whats going on.

7.6.4 Tracking the database instance

Applying the above pattern to the firebaseDatabase () predicate we get the following:

SourceNode firebaseDatabase(TypeTracker t) {
t.start() and
result = firebase().getAMethodCall("database")
or
exists(TypeTracker t2 |
result = firebaseDatabase(t2).track(t2, t)

SourceNode firebaseDatabase() {
result = firebaseDatabase(TypeTracker: :end())

}

There are now two predicates named firebaseDatabase. The one with the TypeTracker parameter is the one
actually doing the global data flow tracking — the other predicate exposes the result in a convenient way.

The new TypeTracker t parameter is a summary of the steps needed to track the value of interest to the resulting
data flow node.

In the base case, when matching firebase.database(), we use t.start() to indicate that no steps were
needed, that is, this is the starting point of type tracking:

t.start() and
result = firebase().getAMethodCall("database")

In the recursive case, we apply the track predicate on a previously-found Firebase database node, such as
firebase.database(). The track predicate maps this to a successor of that node, such as getDatabase(),
and binds t to the continuation of t2 with this extra step included:

exists(TypeTracker t2 |
result = firebaseDatabase(t2).track(t2, t)

To understand the role of t here, note that type tracking can step into a property, which means the data flow node
returned from track is not necessarily a Firebase database instance, it could be an object containing a Firebase
database in one of its properties.

For example, in the program below, the firebaseDatabase (t) predicate includes the obj node in its result, but
with t recording the fact that the actual value being tracked is inside the DB property:

262 Chapter 7. CodeQL for JavaScript

Learning CodeQL, Release 1.24

let obj = { DB: firebase.database() };
let db = obj.DB;

This brings us to the last predicate. This uses TypeTracker: :end() to filter out the paths where the Firebase
database instance ended up inside a property of another object, so it includes db but not obj:

SourceNode firebaseDatabase() {
result = firebaseDatabase(TypeTracker: :end())

}

Heres see an example of what this can handle now:

class Firebase {
constructor() {
this.db = firebase.database();
}

getDatabase() { return this.db; }
setForecast (value) {

this.getDatabase() .ref ("forecast") .set(value); // found by firebaseSetterCall ()
}

7.6.5 Tracking in the whole model

We applied this pattern to firebaseDatabase () in the previous section, and it can just as easily apply to the
other predicates. For reference, heres our simple Firebase model with type tracking on every predicate:

SourceNode firebase(TypeTracker t) {
t.start() and
result = globalVarRef("firebase")
or
exists(TypeTracker t2 |
result = firebase(t2).track(t2, t)

SourceNode firebase() {
result = firebase(TypeTracker: :end())

}

SourceNode firebaseDatabase(TypeTracker t) {
t.start() and
result = firebase().getAMethodCall("database")
or
exists(TypeTracker t2 |
result = firebaseDatabase(t2).track(t2, t)

(continues on next page)

7.6. Using type tracking for APl modeling 263

Learning CodeQL, Release 1.24

(continued from previous page)

SourceNode firebaseDatabase() {
result = firebaseDatabase(TypeTracker::end())

}

SourceNode firebaseRef (TypeTracker t) {
t.start() and
result = firebaseDatabase().getAMethodCall("ref")
or
exists(TypeTracker t2 |
result = firebaseRef (t2).track(t2, t)

SourceNode firebaseRef() {
result = firebaseRef (TypeTracker::end())
}

MethodCallNode firebaseSetterCall() {
result = firebaseRef () .getAMethodCall("set")
}

Here is a run of an example query using the model to find set calls on one of the Firebase sample projects. Its
been modified slightly to handle a bit more of the API, which is beyond the scope of this tutorial.

7.6.6 Tracking associated data

By adding extra parameters to the type-tracking predicate, we can carry along extra bits of information about the

result.

For example, heres a type-tracking version of firebaseRef (), which tracks the string that was passed to the ref

call:

SourceNode firebaseRef(string name, TypeTracker t) {
t.start() and
exists(CallNode call |

call = firebaseDatabase().getAMethodCall("ref") and

name = call.getArgument(0).getStringValue() and
result = call

)

or

exists(TypeTracker t2 |
result = firebaseRef (name, t2).track(t2, t)

SourceNode firebaseRef(string name) {
result = firebaseRef (name, TypeTracker::end())

}

MethodCallNode firebaseSetterCall(string refName) {
result = firebaseRef (refName) .getAMethodCall("set")

(continues on next page)

264

Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/1053770500827789481

Learning CodeQL, Release 1.24

(continued from previous page)

So now we can use firebaseSetterCall("forecast") to find assignments to the forecast.

7.6.7 Back-tracking callbacks

The type-tracking predicates weve seen above all use forward tracking. That is, they all start with some value of
interest and ask where does this flow?.

Sometimes its more useful to work backwards, starting at the desired end-point and asking what flows to here?.

As a motivating example, well extend our model to look for places where we read a value from the database, as
opposed to writing it. Reading is an asynchronous operation and the result is obtained through a callback, for
example:

function fetchForecast(callback) {
firebase.database() .ref ("forecast") .once("value", callback);

function updateReminders() {
fetchForecast ((snapshot) => {
let forecast = snapshot.val(); // <-- find this call
addReminder (forecast === "Rain" 7 "Umbrella" : "Sunscreen'");

b

The actual forecast is obtained by the call to snapshot.val().

Looking for all method calls named val will in practice find many unrelated methods, so well use type tracking
again to take the receiver type into account.

The receiver snapshot is a parameter to a callback function, which ultimately escapes into the once () call. Well
extend our model from above to use back-tracking to find all functions that flow into the once () call. Backwards
type tracking is not too different from forwards type tracking. The differences are:

* The TypeTracker parameter instead has type TypeBackTracker.
e The call to .track() is instead a call to .backtrack().

* To ensure the initial value is a source node, a call to getALocalSource() is usually required.

SourceNode firebaseSnapshotCallback(string refName, TypeBackTracker t) {
t.start() and
result = firebaseRef (refName).getAMethodCall("once").getArgument (1) .getALocalSource()
or
exists(TypeBackTracker t2 |
result = firebaseSnapshotCallback(refName, t2).backtrack(t2, t)

FunctionNode firebaseSnapshotCallback(string refName) {
result = firebaseSnapshotCallback(refName, TypeBackTracker::end())
}

7.6. Using type tracking for APl modeling 265

Learning CodeQL, Release 1.24

Now, firebaseSnapshotCallback("forecast") finds the function being passed to fetchForecast. Based on
that we can track the snapshot value and find the val () call itself:

SourceNode firebaseSnapshot(string refName, TypeTracker t) {
t.start() and
result = firebaseSnapshotCallback(refName) .getParameter(0)
or
exists(TypeTracker t2 |
result = firebaseSnapshot(refName, t2).track(t2, t)

SourceNode firebaseSnapshot(string refName) {
result = firebaseSnapshot(refName, TypeTracker::end())

}

MethodCallNode firebaseDatabaseRead(string refName) {
result = firebaseSnapshot(refName) .getAMethodCall("val")
}

With this addition, firebaseDatabaseRead ("forecast") finds the call to snapshot.val() that contains the
value of the forecast.

Here is a run of an example query using the model to find val calls.

7.6.8 Summary

We have covered how to use the type-tracking library. To recap, use this template to define forward type-tracking
predicates:

SourceNode myType(TypeTracker t) {
t.start() and
result = /* SourcelNode to track */
or
exists(TypeTracker t2 |
result = myType(t2).track(t2, t)

SourceNode myType() {
result = myType(TypeTracker: :end())

Use this template to define backward type-tracking predicates:

SourceNode myType (TypeBackTracker t) {
t.start() and
result = (/* argument to track */).getALocalSource()
or
exists(TypeBackTracker t2 |
result = myType(t2).backtrack(t2, t)

(continues on next page)

266 Chapter 7. CodeQL for JavaScript

https://lgtm.com/query/8761360814276109092

Learning CodeQL, Release 1.24

(continued from previous page)

SourceNode myType() {
result = myType(TypeBackTracker: :end())

Note that these predicates all return SourceNode, so attempts to track a non-source node, such as an identifier
or string literal, will not work. If this becomes an issue, see TypeTracker.smallstep.

Also note that the predicates taking a TypeTracker or TypeBackTracker can often be made private, as they
are typically only used as an intermediate result to compute the other predicate.

7.6.9 Limitations
As mentioned, type tracking will track values in and out of function calls and properties, but only within some
limits.

For example, type tracking does not always track through functions. That is, if a value flows into a parameter and
back out of the return value, it might not be tracked back out to the call site again. Heres an example that the
model from this tutorial wont find:

function wrapDB(database) {
return { db: database }
}
let wrapper = wrapDB(firebase.database())
wrapper.db.ref ("forecast"); // <-- not found

This is an example of where data-flow configurations are more powerful.

7.6.10 When to use type tracking

Type tracking and data-flow configurations are different solutions to the same problem, each with their own
tradeoffs.

Type tracking can be used in any number of predicates, which may depend on each other in fairly unrestricted
ways. The result of one predicate may be the starting point for another. Type-tracking predicates may be mutually
recursive. Type-tracking predicates can have any number of extra parameters, making it possible, but optional,
to construct source/sink pairs. Omitting source/sink pairs can be useful when there is a huge number of sources
and sinks.

Data-flow configurations have more restricted dependencies but are more powerful in other ways. For perfor-
mance reasons, the sources, sinks, and steps of a configuration should not depend on whether a flow path has
been found using that configuration or any other configuration. In that sense, the sources, sinks, and steps must
be configured up front and cant be discovered on-the-fly. The upside is that they track flow through functions and
callbacks in some ways that type tracking doesnt, which is particularly important for security queries. Also, path
queries can only be defined using data-flow configurations.

Prefer type tracking when:
* Disambiguating generically named methods or properties.

* Making reusable library components to be shared between queries.

7.6. Using type tracking for APl modeling 267

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/TypeTracking.qll/predicate.TypeTracking\protect \T1\textdollar TypeTracker\protect \T1\textdollar smallstep.2.html
https://help.semmle.com/QL/learn-ql/javascript/dataflow.html#global-data-flow

Learning CodeQL, Release 1.24

* The set of source/sink pairs is too large to compute or has insufficient information.
¢ The information is needed as input to a data-flow configuration.

Prefer data-flow configurations when:
* Tracking user-controlled data — use taint tracking.

» Differentiating between different kinds of user-controlled data — see Using flow labels for precise data flow
analysis.

* Tracking transformations of a value through generic utility functions.
* Tracking values through string manipulation.
* Generating a path from source to sink — see Creating path queries.
Lastly, depending on the code base being analyzed, some alternatives to consider are:
» Using static type information, if analyzing TypeScript code.
* Relying on local data flow.

* Relying on syntactic heuristics such as the name of a method, property, or variable.

7.6.11 Type tracking in the standard libraries
Type tracking is used in a few places in the standard libraries:
* The DOM predicates, documentRef, locationRef, and domValueRef, are implemented with type tracking.

e The HTTP server models, such as Express, use type tracking to track the installation of router handler
functions.

* The Firebase and Socket.io models use type tracking to track objects coming from their respective APIs.

7.6.12 Further reading

* CodeQL queries for JavaScript

¢ Example queries for JavaScript

* CodeQL library reference for JavaScript
* QL language reference

¢ CodeQL tools

7.7 Abstract syntax tree classes for working with JavaScript and Type-
Script programs

CodeQL has a large selection of classes for representing the abstract syntax tree of JavaScript and TypeScript

programs.

The abstract syntax tree (AST) represents the syntactic structure of a program. Nodes on the AST represent
elements such as statements and expressions.

268 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/QL/learn-ql/javascript/dataflow.html#using-global-taint-tracking
https://help.semmle.com/QL/learn-ql/javascript/introduce-libraries-ts.html#static-type-information
https://help.semmle.com/qldoc/javascript/semmle/javascript/DOM.qll/module.DOM\protect \T1\textdollar DOM.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/DOM.qll/predicate.DOM\protect \T1\textdollar DOM\protect \T1\textdollar documentRef.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/DOM.qll/predicate.DOM\protect \T1\textdollar DOM\protect \T1\textdollar locationRef.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/DOM.qll/predicate.DOM\protect \T1\textdollar DOM\protect \T1\textdollar domValueRef.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/HTTP.qll/module.HTTP\protect \T1\textdollar HTTP.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/Express.qll/module.Express\protect \T1\textdollar Express.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/Firebase.qll/module.Firebase\protect \T1\textdollar Firebase.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/SocketIO.qll/module.SocketIO\protect \T1\textdollar SocketIO.html
https://github.com/github/codeql/tree/master/javascript/ql/src
https://github.com/github/codeql/tree/master/javascript/ql/examples
https://help.semmle.com/qldoc/javascript/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Learning CodeQL, Release 1.24

7.7.1 Statement classes

This table lists subclasses of Stmt representing ECMAScript and TypeScript statements.

Statement syntax

CodeQL class

Superclasses

Expr ; ExprStmt

Label : Stmt LabeledStmt

; EmptyStmt

break Label ; BreakStmt JumpStmt, BreakOrContinueStmt
case Expr : Stmt Case

catch(Identifier) { Stmt } CatchClause ControlStmt

class Identifier extends Expr { MemberDeclaration } | ClassDeclStmt ClassDefinition, ClassOrInterface, '
const Identifier = Expr ; ConstDeclStmt DeclStmt

continue Label ; ContinueStmt JumpStmt, BreakOrContinueStmt
debugger; DebuggerStmt

declare global { Stmt }

GlobalAugmentationDeclaration

declare module Stringliteral { Stmt }

ExternalModuleDeclaration

default: Stmt Case
do Stmt while (Expr) DoWhileStmt ControlStmt, LoopStmt
enum Identifier { MemberDeclaration } EnumDeclaration NamespaceDefinition

export * from StringLiteral BulkReExportDeclaration ReExportDeclaration, ExportDeclar
export default ClassDeclStmt ExportDefaultDeclaration ExportDeclaration
export default Expr ; ExportDefaultDeclaration ExportDeclaration
export default FunctionDeclStmt ExportDefaultDeclaration ExportDeclaration
export { ExportSpecifier }; ExportNamedDeclaration ExportDeclaration
export DeclStmt ExportNamedDeclaration ExportDeclaration

export = Expr ;

ExportAssignDeclaration

export as namespace Identifier ;

ExportAsNamespaceDeclaration

for (Expr ; Expr ; Expr) Stmt

ForStmt

ControlStmt, LoopStmt

for (VarAccess in Expr) Stmt ForInStmt ControlStmt, LoopStmt, Enhanced!
for (VarAccess of Expr) Stmt ForOfStmt ControlStmt, LoopStmt, Enhanced
function Identifier (Parameter) { Stmt } FunctionDeclStmt Function

if (Expr) Stmt else Stmt IfStmt ControlStmt

import { ImportSpecifier from StringLiteral ImportDeclaration Import

import Identifier = Expr ;

ImportEqualsDeclaration

interface Identifier { MemberDeclaration } InterfaceDeclaration InterfaceDefinition, ClassOrInterfa
let Identifier = Expr ; LetStmt DeclStmt

namespace Identifier { Stmt } NamespaceDeclaration NamespaceDefinition
return Expr ; ReturnStmt JumpStmt

switch (Expr) { Case} SwitchStmt ControlStmt

throw Expr ; ThrowStmt JumpStmt

try { Stmt } CatchClause finally { Stmt } TryStmt ControlStmt

type Identifier = TypeExpr ; TypeAliasDeclaration TypeParameterized
var Identifier = Expr ; VarDeclStmt DeclStmt

while (Expr) Stmt WhileStmt ControlStmt, LoopStmt
with (Expr) Stmt WithStmt ControlStmt

7.7. Abstract syntax tree classes for working with JavaScript and TypeScript programs

269

https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ExprStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Label.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LabeledStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar EmptyStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Label.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar BreakStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar JumpStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar BreakOrContinueStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Case.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar CatchClause.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar TryStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar MemberDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassOrInterface.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeParameterized.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ConstDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Label.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ContinueStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar JumpStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar BreakOrContinueStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DebuggerStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar GlobalAugmentationDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExternalModuleDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Case.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DoWhileStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar MemberDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar EnumDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar BulkReExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ReExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDefaultDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDefaultDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar FunctionDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDefaultDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportSpecifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportNamedDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportNamedDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ExportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExportAssignDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ExportAsNamespaceDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ForStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ForInStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar EnhancedForLoop.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ForOfStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar EnhancedForLoop.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar FunctionDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar IfStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ImportSpecifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/ES2015Modules.qll/type.ES2015Modules\protect \T1\textdollar ImportDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Modules.qll/type.Modules\protect \T1\textdollar Import.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar ImportEqualsDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar MemberDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar InterfaceDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar InterfaceDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Classes.qll/type.Classes\protect \T1\textdollar ClassOrInterface.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeParameterized.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LetStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar NamespaceDefinition.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ReturnStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar JumpStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Case.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar SwitchStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ThrowStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar JumpStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar CatchClause.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar TryStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeAliasDeclaration.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/TypeScript.qll/type.TypeScript\protect \T1\textdollar TypeParameterized.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar VarDeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar DeclStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar WhileStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar LoopStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar WithStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar ControlStmt.html

Learning CodeQL, Release 1.24

Table 1 — continued from pre

Statement syntax

CodeQL class

Superclasses

{ Stmt }

BlockStmt

7.7.2 Expression classes

There is a large number of expression classes, so we present them by category. All classes in this section are
subclasses of Expr, except where noted otherwise.

Literals

All classes in this subsection are subclasses of Literal.

Expression syntax

CodeQL class

true BooleanLiteral
23 NumberLiteral
4.2 NumberLiteral
"Hello" StringLiteral
/abxc?/ RegExpLiteral
null NullLiteral

Identifiers

All identifiers are represented by the class Identifier, which has subclasses to represent specific kinds of identifiers:

e VarAccess: an identifier that refers to a variable

e VarDecl: an identifier that declares a variable, for example x in var x = "hi" or in function(x) { }

e VarRef: a VarAccess or a VarDecl

* Label: an identifier that refers to a statement label or a property, not a variable; in the following examples,

1 and p are labels:
— break 1;

- 1: for(;;) {}

X.p
{p: 421}

Primary expressions

All classes in this subsection are subclasses of Expr.

270

Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar BlockStmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Literal.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BooleanLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NumberLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NumberLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StringLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar RegExpLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NullLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarRef.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar VarDecl.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Label.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html

Learning CodeQL, Release 1.24

Expression Cod- Su- Remarks

syntax eQL per-
class classe

this This-
Expr

[Expr] Array-
Expr

{ Property } | Object-
Expr

function (| Func- Func-

Parameter) | tion- tion

{ Stmt } Expr

(Parameter | Arrow- Func-

) => Expr Func- tion
tion-
Expr

(Expr) ParExpr

T Tem- an element in a TemplateLiteral is either a TemplateElement representing
plateLit- a constant template element, or some other expression representing an in-
eral terpolated expression of the form ${ Expr }

Expr ~ ° TaggedTem- an element in a TaggedTemplateExpr is either a TemplateElement represent-
plate- ing a constant template element, or some other expression representing an
Expr interpolated expression of the form ${ Expr }

Properties

All classes in this subsection are subclasses of Property. Note that Property is not a subclass of Expr.

Property syntax CodeQL class | Superclasses
Identifier : Expr ValueProperty

get Identifier () { Stmt } PropertyGetter | PropertyAccessor
set Identifier (Identifier) { Stmt } | PropertySetter | PropertyAccessor

Property accesses

All classes in this subsection are subclasses of PropAccess.

Expression syntax | CodeQL class

Expr . Identifier DotExpr

Expr [Expr] IndexExpr

Function calls and new

All classes in this subsection are subclasses of InvokeExpr.

7.7. Abstract syntax tree classes for working with JavaScript and TypeScript programs 271

https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ThisExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ThisExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrayExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrayExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Property.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ObjectExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ObjectExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar FunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar FunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar FunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Variables.qll/type.Variables\protect \T1\textdollar Parameter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrowFunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrowFunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrowFunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ArrowFunctionExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Functions.qll/type.Functions\protect \T1\textdollar Function.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ParExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateLiteral.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TaggedTemplateExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TaggedTemplateExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TaggedTemplateExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TaggedTemplateExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Templates.qll/type.Templates\protect \T1\textdollar TemplateElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Property.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Property.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ValueProperty.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertyGetter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertyAccessor.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Stmt.qll/type.Stmt\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertySetter.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropertyAccessor.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PropAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar DotExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar IndexExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar InvokeExpr.html

Learning CodeQL, Release 1.24

Expression syntax CodeQL class Remarks

Expr (Expr) CallExpr

Expr . Identifier (Expr) | MethodCallExpr | this also includes calls of the form Expr [Expr 1 (Expr)
new Expr (Expr) NewExpr

Unary expressions

All classes in this subsection are subclasses of UnaryExpr.

Binary expressions

All classes in this subsection are subclasses of BinaryExpr.

Expression syntax

CodeQL class

~ Expr BitNotExpr

- Expr NegExpr

+ Expr PlusExpr

! Expr LogNotExpr
typeof Expr TypeofExpr
void Expr VoidExpr
delete Expr DeleteExpr

... Expr SpreadElement

272

Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CallExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Identifier.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar MethodCallExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NewExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar UnaryExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BitNotExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NegExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PlusExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LogNotExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar TypeofExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar VoidExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar DeleteExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar SpreadElement.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BinaryExpr.html

Learning CodeQL, Release 1.24

Assignment expressions

Expression syntax CodeQL class Superclasses
Expr * Expr MulExpr
Expr / Expr DivExpr
Expr % Expr ModExpr
Expr ** Expr ExpExpr
Expr + Expr AddExpr
Expr - Expr SubExpr
Expr << Expr LShiftExpr
Expr >> Expr RShiftExpr
Expr >>> Expr URShiftExpr
Expr && Expr LogAndExpr
Expr | | Expr LogOrExpr
Expr < Expr LTExpr Comparison
Expr > Expr GTExpr Comparison
Expr <= Expr LEExpr Comparison
Expr >= Expr GEExpr Comparison
Expr == Expr EqExpr EqualityTest, Comparison
Expr != Expr NEgExpr EqualityTest, Comparison
Expr === Expr StrictEqExpr EqualityTest, Comparison
Expr !== Expr StrictNEqExpr | EqualityTest, Comparison
Expr & Expr BitAndExpr
Expr | Expr BitOrExpr
Expr ~ Expr XOrExpr
Expr in Expr InExpr
Expr instanceof Expr | InstanceofExpr
gnment.

All classes in this table are subclasses of Assi

Expression syntax | CodeQL class Superclasses

Expr = Expr AssignExpr

Expr += Expr AssignAddExpr CompoundAssignExpr
Expr -= Expr AssignSubExpr CompoundAssignExpr
Expr *= Expr AssignMulExpr CompoundAssignExpr
Expr **= Expr AssignExpExpr CompoundAssignExpr
Expr /= Expr AssignDivExpr CompoundAssignExpr
Expr %= Expr AssignModExpr CompoundAssignExpr
Expr &= Expr AssignAndExpr CompoundAssignExpr
Expr |= Expr AssignOrExpr CompoundAssignExpr
Expr ~= Expr AssignXOrExpr CompoundAssignExpr
Expr <<= Expr AssignLShiftExpr CompoundAssignExpr
Expr >>= Expr AssignRShiftExpr CompoundAssignExpr
Expr >>>= Expr AssignURShiftExpr | CompoundAssignExpr

7.7. Abstract syntax tree classes for working with JavaScript and TypeScript programs

273

https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar MulExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar DivExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ModExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ExpExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AddExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar SubExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar RShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar URShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LogAndExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LogOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LTExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar GTExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar LEExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar GEExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar EqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar EqualityTest.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar NEqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar EqualityTest.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StrictEqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar EqualityTest.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar StrictNEqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar EqualityTest.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Comparison.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BitAndExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar BitOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar XOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar InExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar InstanceofExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Assignment.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignAddExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignSubExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignMulExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignExpExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignDivExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignModExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignAndExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignXOrExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignLShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignRShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AssignURShiftExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar CompoundAssignExpr.html

Learning CodeQL, Release 1.24

Update expressions

All classes in this table are subclasses of UpdateExpr.

Miscellaneous

Expression syntax | CodeQL class
Expr ++ PostIncExpr
Expr —- PostDecExpr
++ Expr PrelncExpr
—-- Expr PreDecExpr

All classes in this table are subclasses of Expr.

7.7.3 Further reading

* CodeQL queries for JavaScript

Expression syntax

CodeQL class

Expr ? Expr : Expr | ConditionalExpr
Expr, , Expr SeqExpr

await Expr AwaitExpr
yield Expr YieldExpr

* Example queries for JavaScript

* CodeQL library reference for JavaScript

* QL language reference

* CodeQL tools

7.8 Data flow cheat sheet for JavaScript

This article describes parts of the JavaScript libraries commonly used for variant analysis and in data flow queries.

7.8.1 Taint tracking path queries

Use the following template to create a taint tracking path query:

J**

* @kind path-problem

*/

import javascript

import DataFlow

import DataFlow::PathGraph

class MyConfig extends TaintTracking::Configuration {
MyConfig() { this = "MyConfig" }
override predicate isSource(Node node) { ... }

override predicate isSink(Node node) { ... }

(continues on next page)

274

Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar UpdateExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PostIncExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PostDecExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PreIncExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar PreDecExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar ConditionalExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar SeqExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar AwaitExpr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar Expr.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Expr.qll/type.Expr\protect \T1\textdollar YieldExpr.html
https://github.com/github/codeql/tree/master/javascript/ql/src
https://github.com/github/codeql/tree/master/javascript/ql/examples
https://help.semmle.com/qldoc/javascript/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

(continued from previous page)

override predicate isAdditionalTaintStep(Node pred, Node succ) { ... }
}

from MyConfig cfg, PathNode source, PathNode sink
where cfg.hasFlowPath(source, sink)
select sink.getNode(), source, sink, "taint from $0.", source.getNode(), "here"

This query reports flow paths which:
* Begin at a node matched by isSource.

* Step through variables, function calls, properties, strings, arrays, promises, exceptions, and steps added by
isAdditionalTaintStep.

* End at a node matched by isSink.

See also: Global data flow and Creating path queries.

7.8.2 DataFlow module

Use data flow nodes to match program elements independently of syntax. See also: Analyzing data flow in
JavaScript and TypeScript.

Predicates in the DataFlow: : module:
e modulelmport — finds uses of a module
* moduleMember - finds uses of a module member
* globalVarRef - finds uses of a global variable
Classes and member predicates in the DataFlow: : module:

* Node - something that can have a value, such as an expression, declaration, or SSA variable

getALocalSource — find the node that this came from

getTopLevel — top-level scope enclosing this node

getFile — file containing this node

getIntValue — value of this node if its is an integer constant

getStringValue — value of this node if its is a string constant

mayHaveBooleanValue — check if the value is true or false

* SourceNode extends Node - function call, parameter, object creation, or reference to a property or global variable

getACall - find calls with this as the callee

getAnInstantiation — find new-calls with this as the callee

getAnInvocation — find calls or new-calls with this as the callee

getAMethodCall — find method calls with this as the receiver

getAMemberCall — find calls with a member of this as the receiver

getAPropertyRead — find property reads with this as the base

7.8. Data flow cheat sheet for JavaScript 275

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Configuration.qll/predicate.Configuration\protect \T1\textdollar Configuration\protect \T1\textdollar isSource.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/TaintTracking.qll/predicate.TaintTracking\protect \T1\textdollar TaintTracking\protect \T1\textdollar Configuration\protect \T1\textdollar isAdditionalTaintStep.2.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Configuration.qll/predicate.Configuration\protect \T1\textdollar Configuration\protect \T1\textdollar isSink.1.html
https://help.semmle.com/QL/learn-ql/javascript/dataflow.html#global-data-flow
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar moduleImport.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar moduleMember.2.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar globalVarRef.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/type.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar getALocalSource.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar getTopLevel.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar getFile.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar getIntValue.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar getStringValue.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar mayHaveBooleanValue.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/type.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getACall.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAnInstantiation.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAnInvocation.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAMethodCall.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAMemberCall.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAPropertyRead.1.html

Learning CodeQL, Release 1.24

— getAPropertyWrite — find property writes with this as the base
— getAPropertySource — find nodes flowing into a property of this node

¢ InvokeNode, NewNode, CallNode, MethodCallNode extends SourceNode — call to a function or constructor

getArgument — an argument to the call

getCalleeNode — node being invoked as a function

getCalleeName — name of the variable or property being called

getOptionArgument — a named argument passed in through an object literal

getCallback — a function passed as a callback

getACallee - a function being called here

(MethodCallNode).getMethodName — name of the method being invoked
— (MethodCallNode).getReceiver — receiver of the method call

* FunctionNode extends SourceNode - definition of a function, including closures, methods, and class constructors

getName — name of the function, derived from a variable or property name

getParameter — a parameter of the function

getReceiver — the node representing the value of this

getAReturn — get a returned expression
* ParameterNode extends SourceNode — parameter of a function
- getName - the parameter name, if it has one

¢ ClassNode extends SourceNode - class declaration or function that acts as a class

getName — name of the class, derived from a variable or property name

getConstructor — the constructor function

getlnstanceMethod — get an instance method by name

getStaticMethod — get a static method by name

getAnInstanceReference — find references to an instance of the class

getAClassReference - find references to the class itself

* ObjectLiteralNode extends SourceNode - object literal
— getAPropertyWrite — a property in the object literal
- getAPropertySource — value flowing into a property

* ArrayCreationNode extends SourceNode - array literal or call to Array constructor
- getElement — an element of the array

* PropRef, PropRead, PropWrite — read or write of a property

- getPropertyName — name of the property, if it is constant

276 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAPropertyWrite.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAPropertySource.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar InvokeNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar NewNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar CallNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar MethodCallNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar InvokeNode\protect \T1\textdollar getArgument.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar InvokeNode\protect \T1\textdollar getCalleeNode.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar InvokeNode\protect \T1\textdollar getCalleeName.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar InvokeNode\protect \T1\textdollar getOptionArgument.2.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar InvokeNode\protect \T1\textdollar getCallback.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar InvokeNode\protect \T1\textdollar getACallee.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar MethodCallNode\protect \T1\textdollar getMethodName.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar CallNode\protect \T1\textdollar getReceiver.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar FunctionNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar FunctionNode\protect \T1\textdollar getName.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar FunctionNode\protect \T1\textdollar getParameter.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar FunctionNode\protect \T1\textdollar getReceiver.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar FunctionNode\protect \T1\textdollar getAReturn.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar ParameterNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ParameterNode\protect \T1\textdollar getName.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar ClassNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ClassNode\protect \T1\textdollar getName.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ClassNode\protect \T1\textdollar getConstructor.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ClassNode\protect \T1\textdollar getInstanceMethod.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ClassNode\protect \T1\textdollar getStaticMethod.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ClassNode\protect \T1\textdollar getAnInstanceReference.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ClassNode\protect \T1\textdollar getAClassReference.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar ObjectLiteralNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAPropertyWrite.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getAPropertySource.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/type.Nodes\protect \T1\textdollar ArrayCreationNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/type.Sources\protect \T1\textdollar SourceNode.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar ArrayCreationNode\protect \T1\textdollar getElement.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/type.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar PropRef.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/type.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar PropRead.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/type.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar PropWrite.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar PropRef\protect \T1\textdollar getPropertyName.0.html

Learning CodeQL, Release 1.24

— getPropertyNameExpr — expression holding the name of the property
— getBase — object whose property is accessed

— (PropWrite).getRhs — right-hand side of the property assignment

7.8.3 StringOps module
» StringOps::Concatenation — string concatenation, using a plus operator, template literal, or array join call
e StringOps::StartsWith — check if a string starts with something
* StringOps::EndsWith — check if a string ends with something

e StringOps::Includes — check if a string contains something

7.8.4 Utility
* ExtendCall — call that copies properties from one object to another
e JsonParserCall — call that deserializes a JSON string

* PropertyProjection — call that extracts nested properties by name

7.8.5 System and Network
¢ ClientRequest — outgoing network request
* DatabaseAccess — query being submitted to a database
¢ FileNameSource — reference to a filename
* FileSystemAccess - file system operation
— FileSystemReadAccess — reading the contents of a file
— FileSystemWriteAccess — writing to the contents of a file
* PersistentReadAccess — reading from persistent storage, like cookies
* PersistentWriteAccess — writing to persistent storage
* RemoteFlowSource — source of untrusted user input

¢ SystemCommandExecution — execution of a system command

7.8.6 Files
¢ File, Folder extends Container — file or folder in the database
— getBaseName — the name of the file or folder

- getRelativePath — path relative to the database root

7.8.7 AST nodes
See also: Abstract syntax tree classes for working with JavaScript and TypeScript programs.
Conversion between DataFlow and AST nodes:

* Node.asExpr() — convert node to an expression, if possible

7.8. Data flow cheat sheet for JavaScript 277

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar PropRef\protect \T1\textdollar getPropertyNameExpr.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar PropRef\protect \T1\textdollar getBase.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar PropWrite\protect \T1\textdollar getRhs.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/StringOps.qll/type.StringOps\protect \T1\textdollar StringOps\protect \T1\textdollar Concatenation.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/StringOps.qll/type.StringOps\protect \T1\textdollar StringOps\protect \T1\textdollar StartsWith.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/StringOps.qll/type.StringOps\protect \T1\textdollar StringOps\protect \T1\textdollar EndsWith.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/StringOps.qll/type.StringOps\protect \T1\textdollar StringOps\protect \T1\textdollar Includes.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Extend.qll/type.Extend\protect \T1\textdollar ExtendCall.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/JsonParsers.qll/type.JsonParsers\protect \T1\textdollar JsonParserCall.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/PropertyProjection.qll/type.PropertyProjection\protect \T1\textdollar PropertyProjection.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/frameworks/ClientRequests.qll/type.ClientRequests\protect \T1\textdollar ClientRequest.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar DatabaseAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar FileNameSource.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar FileSystemAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar FileSystemReadAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar FileSystemWriteAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar PersistentReadAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar PersistentWriteAccess.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/security/dataflow/RemoteFlowSources.qll/type.RemoteFlowSources\protect \T1\textdollar RemoteFlowSource.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Concepts.qll/type.Concepts\protect \T1\textdollar SystemCommandExecution.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar File.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Folder.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/type.Files\protect \T1\textdollar Container.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/predicate.Files\protect \T1\textdollar Container\protect \T1\textdollar getBaseName.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/Files.qll/predicate.Files\protect \T1\textdollar Container\protect \T1\textdollar getRelativePath.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar asExpr.0.html

Learning CodeQL, Release 1.24

* Expr.flow() — convert expression to a node (always possible)
e DataFlow::valueNode — convert expression or declaration to a node
* DataFlow::parameterNode — convert a parameter to a node

* DataFlow::thisNode — get the receiver node of a function

7.8.8 String matching
* x.matches(escape%) — holds if x starts with escape
* x.regexpMatch(escape.*) — holds if x starts with escape

* x.regexpMatch((?i).*escape.*) — holds if x contains escape (case insensitive)

7.8.9 Type tracking
See also: Using type tracking for API modeling.

Use the following template to define forward type tracking predicates:

import DataFlow

SourceNode myType(TypeTracker t) {
t.start() and
result = /* SourcelNode to track */
or
exists(TypeTracker t2 |
result = myType(t2).track(t2, t)

SourceNode myType() {
result = myType(TypeTracker: :end())

Use the following template to define backward type tracking predicates:

import DataFlow

SourceNode myType(TypeBackTracker t) {
t.start() and
result = (/* argument to track */).getALocalSource()
or
exists(TypeBackTracker t2 |
result = myType(t2) .backtrack(t2, t)

SourceNode myType() {
result = myType(TypeBackTracker::end())

278 Chapter 7. CodeQL for JavaScript

https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/predicate.AST\protect \T1\textdollar AST\protect \T1\textdollar ValueNode\protect \T1\textdollar flow.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar valueNode.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar parameterNode.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar thisNode.1.html
https://help.semmle.com/qldoc/javascript/predicate.string\protect \T1\textdollar matches.1.html
https://help.semmle.com/qldoc/javascript/predicate.string\protect \T1\textdollar regexpMatch.1.html
https://help.semmle.com/qldoc/javascript/predicate.string\protect \T1\textdollar regexpMatch.1.html

Learning CodeQL, Release 1.24

7.8.10 Troubleshooting

Using a call node as as sink? Try using getArgument to get an argument of the call node instead.

Trying to use moduleImport or moduleMember as a call node? Try using getACall to get a call to the
imported function, instead of the function itself.

Compilation fails due to incompatible types? Make sure AST nodes and DataFlow nodes are not mixed up.
Use asExpr() or flow() to convert.

7.8.11 Further reading

Exploring data flow with path queries

CodeQL queries for JavaScript

Example queries for JavaScript

CodeQL library reference for JavaScript

QL language reference

CodeQL tools

Basic query for JavaScript code: Learn to write and run a simple CodeQL query using LGTM.

CodeQL library for JavaScript: When youre analyzing a JavaScript program, you can make use of the large
collection of classes in the CodeQL library for JavaScript.

CodeQL library for TypeScript: When youre analyzing a TypeScript program, you can make use of the large
collection of classes in the CodeQL library for TypeScript.

Analyzing data flow in JavaScript and TypeScript: This topic describes how data flow analysis is implemented
in the CodeQL libraries for JavaScript/TypeScript and includes examples to help you write your own data
flow queries.

Using flow labels for precise data flow analysis: You can associate flow labels with each value tracked by the
flow analysis to determine whether the flow contains potential vulnerabilities.

Using type tracking for API modeling: You can track data through an API by creating a model using the
CodeQL type-tracking library for JavaScript.

Abstract syntax tree classes for working with JavaScript and TypeScript programs: CodeQL has a large selection
of classes for representing the abstract syntax tree of JavaScript and TypeScript programs.

Data flow cheat sheet for JavaScript: This article describes parts of the JavaScript libraries commonly used
for variant analysis and in data flow queries.

7.8.

Data flow cheat sheet for JavaScript 279

https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar InvokeNode\protect \T1\textdollar getArgument.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar moduleImport.1.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Nodes.qll/predicate.Nodes\protect \T1\textdollar moduleMember.2.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/Sources.qll/predicate.Sources\protect \T1\textdollar SourceNode\protect \T1\textdollar getACall.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/dataflow/DataFlow.qll/predicate.DataFlow\protect \T1\textdollar DataFlow\protect \T1\textdollar Node\protect \T1\textdollar asExpr.0.html
https://help.semmle.com/qldoc/javascript/semmle/javascript/AST.qll/predicate.AST\protect \T1\textdollar AST\protect \T1\textdollar ValueNode\protect \T1\textdollar flow.0.html
https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql/tree/master/javascript/ql/src
https://github.com/github/codeql/tree/master/javascript/ql/examples
https://help.semmle.com/qldoc/javascript/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

280 Chapter 7. CodeQL for JavaScript

CHAPTER

EIGHT

CODEQL FOR PYTHON

Experiment and learn how to write effective and efficient queries for CodeQL databases generated from Python

codebases.

8.1 Basic query for Python code

Learn to write and run a simple CodeQL query using LGTM.

8.1.1 About the query

The query were going to run performs a basic search of the code for if statements that are redundant, in the

sense that they only include a pass statement. For example, code such as:

if error: pass

8.1.2 Running the query

1.
2.
3.

In the main search box on LGTM.com, search for the project you want to query. For tips, see Searching.
Click the project in the search results.
Click Query this project.
This opens the query console. (For information about using this, see Using the query console.)
Note

Alternatively, you can go straight to the query console by clicking Query console (at the top
of any page), selecting Python from the Language drop-down list, then choosing one or more
projects to query from those displayed in the Project drop-down list.

Copy the following query into the text box in the query console:

import python

from If ifstmt, Stmt pass
where pass = ifstmt.getStmt(0) and
pass instanceof Pass
select ifstmt, "This 'if' statement is redundant."

281

https://lgtm.com/help/lgtm/searching
https://lgtm.com/help/lgtm/using-query-console

Learning CodeQL, Release 1.24

LGTM checks whether your query compiles and, if all is well, the Run button changes to green to indicate
that you can go ahead and run the query.

. Click Run.

The name of the project you are querying, and the ID of the most recently analyzed commit to the project,
are listed below the query box. To the right of this is an icon that indicates the progress of the query

operation:
Progress: 22%
S

Note
Your query is always run against the most recently analyzed commit to the selected project.

The query will take a few moments to return results. When the query completes, the results are displayed
below the project name. The query results are listed in two columns, corresponding to the two expressions
in the select clause of the query. The first column corresponds to the expression ifstmt and is linked to
the location in the source code of the project where ifstmt occurs. The second column is the alert message.

Example query results

Note

An ellipsis () at the bottom of the table indicates that the entire list is not displayedclick it to
show more results.

If any matching code is found, click a link in the ifstmt column to view the if statement in the code viewer.

The matching if statement is highlighted with a yellow background in the code viewer. If any code in the
file also matches a query from the standard query library for that language, you will see a red alert message
at the appropriate point within the code.

About the query structure

After the initial import statement, this simple query comprises three parts that serve similar purposes to the
FROM, WHERE, and SELECT parts of an SQL query.

282

Chapter 8. CodeQL for Python

https://lgtm.com/query/3592297537117272922/

Learning CodeQL, Release 1.24

Query part

Purpose

Details

import python

Imports the standard CodeQL li-
braries for Python.

Every query begins with one or
more import statements.

from If ifstmt, Stmt pass

Defines the variables for the query.
Declarations are of the form:
<type> <variable name>

We use:
e an If variable for if state-
ments

¢ a Stmt variable for the state-
ment

where pass = ifstmt.
getStmt (0) and pass
instanceof Pass

Defines a condition on the vari-
ables.

pass = ifstmt.getStmt(0):
pass is the first statement in the
if statement.

pass instanceof Pass:
must be a pass statement.
In other words, the first statement
contained in the if statement is a

pass

pass statement.

select ifstmt, "This 'if'
statement is redundant."

Defines what to report for each
match.

select statements for queries that
are used to find instances of
poor coding practice are always
in the form: select <program

element>, "<alert message>"

Reports the resulting if statement
with a string that explains the
problem.

8.1.3 Extend the query

Query writing is an inherently iterative process. You write a simple query and then, when you run it, you discover
examples that you had not previously considered, or opportunities for improvement.

Remove false positive results

Browsing the results of our basic query shows that it could be improved. Among the results you are likely to find
examples of if statements with an else branch, where a pass statement does serve a purpose. For example:

if cond():
pass

else:
do_something()

In this case, identifying the if statement with the pass statement as redundant is a false positive. One solution
to this is to modify the query to ignore pass statements if the if statement has an else branch.

To exclude if statements that have an else branch:

1. Extend the where clause to include the following extra condition:

and not exists(ifstmt.getOrelse())

The where clause is now:

8.1. Basic query for Python code

283

Learning CodeQL, Release 1.24

where pass = ifstmt.getStmt(0) and
pass instanceof Pass and
not exists(ifstmt.getOrelse())

2. Click Run.
There are now fewer results because if statements with an else branch are no longer included.

See this in the query console

8.1.4 Further reading
* CodeQL queries for Python
* Example queries for Python
* CodeQL library reference for Python
* QL language reference

¢ CodeQL tools

8.2 CodeQL library for Python

When you need to analyze a Python program, you can make use of the large collection of classes in the CodeQL
library for Python.

8.2.1 About the CodeQL library for Python

The CodeQL library for each programming language uses classes with abstractions and predicates to present data
in an object-oriented form.

Each CodeQL library is implemented as a set of QL modules, that is, files with the extension .qll. The module
python.qll imports all the core Python library modules, so you can include the complete library by beginning
your query with:

import python

The CodeQL library for Python incorporates a large number of classes. Each class corresponds either to one kind
of entity in Python source code or to an entity that can be derived from the source code using static analysis.
These classes can be divided into four categories:

* Syntactic - classes that represent entities in the Python source code.
* Control flow - classes that represent entities from the control flow graphs.
* Type inference - classes that represent the inferred values and types of entities in the Python source code.

* Taint tracking - classes that represent the source, sinks and kinds of taint used to implement taint-tracking
queries.

8.2.2 Syntactic classes

This part of the library represents the Python source code. The Module, Class, and Function classes correspond
to Python modules, classes, and functions respectively, collectively these are known as Scope classes. Each Scope

284 Chapter 8. CodeQL for Python

https://lgtm.com/query/3424727946018612474/
https://github.com/github/codeql/tree/master/python/ql/src
https://github.com/github/codeql/tree/master/python/ql/examples
https://help.semmle.com/qldoc/python/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

contains a list of statements each of which is represented by a subclass of the class Stmt. Statements themselves
can contain other statements or expressions which are represented by subclasses of Expr. Finally, there are a
few additional classes for the parts of more complex expressions such as list comprehensions. Collectively these
classes are subclasses of AstNode and form an Abstract syntax tree (AST). The root of each AST is a Module.
Symbolic information is attached to the AST in the form of variables (represented by the class Variable). For
more information, see Abstract syntax tree and Symbolic information on Wikipedia.

Scope

A Python program is a group of modules. Technically a module is just a list of statements, but we often think of
it as composed of classes and functions. These top-level entities, the module, class, and function are represented
by the three CodeQL classes Module, Class and Function which are all subclasses of Scope.

* Scope
— Module
- Class
— Function

All scopes are basically a list of statements, although Scope classes have additional attributes such as names. For
example, the following query finds all functions whose scope (the scope in which they are declared) is also a
function:

import python

from Function f
where f.getScope() instanceof Function
select f

See this in the query console on LGTM.com. Many projects have nested functions.

Statement

A statement is represented by the Stmt class which has about 20 subclasses representing the various kinds of
statements, such as the Pass statement, the Return statement or the For statement. Statements are usually
made up of parts. The most common of these is the expression, represented by the Expr class. For example, take
the following Python for statement:

for var in seq:
pass

else:
return 0O

The For class representing the for statement has a number of member predicates to access its parts:
* getTarget () returns the Expr representing the variable var.
* getIter() returns the Expr resenting the variable seq.
e getBody () returns the statement list body.
* getStmt (0) returns the pass Stmt.

* getOrElse() returns the StmtList containing the return statement.

8.2. CodeQL library for Python 285

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Symbol_table
https://help.semmle.com/qldoc/python/semmle/python/Module.qll/type.Module\protect \T1\textdollar Module.html
https://help.semmle.com/qldoc/python/semmle/python/Class.qll/type.Class\protect \T1\textdollar Class.html
https://help.semmle.com/qldoc/python/semmle/python/Function.qll/type.Function\protect \T1\textdollar Function.html
https://lgtm.com/query/665620040/
https://help.semmle.com/qldoc/python/semmle/python/Stmts.qll/type.Stmts\protect \T1\textdollar Stmt.html
https://help.semmle.com/qldoc/python/semmle/python/Stmts.qll/type.Stmts\protect \T1\textdollar For.html

Learning CodeQL, Release 1.24

Expression

Most statements are made up of expressions. The Expr class is the superclass of all expression classes, of which
there are about 30 including calls, comprehensions, tuples, lists and arithmetic operations. For example, the
Python expression a+2 is represented by the BinaryExpr class:

e getLeft () returns the Expr representing the a.
* getRight () returns the Expr representing the 2.

As an example, to find expressions of the form a+2 where the left is a simple name and the right is a numeric
constant we can use the following query:

Finding expressions of the form a+2

import python

from BinaryExpr bin
where bin.getLeft() instanceof Name and bin.getRight() instanceof Num
select bin

See this in the query console on LGTM.com. Many projects include examples of this pattern.

Variable

Variables are represented by the Variable class in the CodeQL library. There are two subclasses, LocalVariable
for function-level and class-level variables and GlobalVariable for module-level variables.

Other source code elements

Although the meaning of the program is encoded by the syntactic elements, Scope, Stmt and Expr there are some
parts of the source code not covered by the abstract syntax tree. The most useful of these is the Comment class
which describes comments in the source code.

Examples

Each syntactic element in Python source is recorded in the CodeQL database. These can be queried via the
corresponding class. Let us start with a couple of simple examples.

1. Finding all finally blocks

For our first example, we can find all finally blocks by using the Try class:

Find all finally blocks

import python

from Try t
select t.getFinalbody ()

See this in the query console on LGTM.com. Many projects include examples of this pattern.

286 Chapter 8. CodeQL for Python

https://help.semmle.com/qldoc/python/semmle/python/Exprs.qll/type.Exprs\protect \T1\textdollar Expr.html
https://lgtm.com/query/669950026/
https://help.semmle.com/qldoc/python/semmle/python/Variables.qll/type.Variables\protect \T1\textdollar Variable.html
https://help.semmle.com/qldoc/python/semmle/python/Comment.qll/type.Comment\protect \T1\textdollar Comment.html
https://lgtm.com/query/659662193/

Learning CodeQL, Release 1.24

2. Finding except blocks that do nothing

For our second example, we can use a simplified version of a query from the standard query set. We look for all
except blocks that do nothing.

A block that does nothing is one that contains no statements except pass statements. We can encode this as:

not exists(Stmt s | s = ex.getAStmt() | not s instanceof Pass)

where ex is an ExceptStmt and Pass is the class representing pass statements. Instead of using the double
negative, no statements that are not pass statements, this can also be expressed positively, all statements must be
pass statements. The positive form is expressed using the forall quantifier:

forall(Stmt s | s = ex.getAStmt() | s instanceof Pass)

Both forms are equivalent. Using the positive expression, the whole query looks like this:

Find pass-only except blocks

import python

from ExceptStmt ex
where forall(Stmt s | s = ex.getAStmt() | s instanceof Pass)
select ex

See this in the query console on LGTM.com. Many projects include pass-only except blocks.

Summary
The most commonly used standard classes in the syntactic part of the library are organized as follows:

Module, Class, Function, Stmt, and Expr - they are all subclasses of AstNode.

Abstract syntax tree

* AstNode

Module — A Python module

Class — The body of a class definition
— Function — The body of a function definition
— Stmt — A statement
Assert — An assert statement
Assign — An assignment
- AssignStmt — An assignment statement, x = y
- ClassDef — A class definition statement
- FunctionDef - A function definition statement
AugAssign — An augmented assignment, x += y

Break — A break statement

8.2. CodeQL library for Python 287

https://lgtm.com/query/690010036/
https://help.semmle.com/qldoc/python/semmle/python/AstExtended.qll/type.AstExtended\protect \T1\textdollar AstNode.html

Learning CodeQL, Release 1.24

Continue — A continue statement

Delete — A del statement

ExceptStmt — The except part of a try statement
Exec — An exec statement

For — A for statement

If — An if statement

Pass — A pass statement

Print — A print statement (Python 2 only)
Raise — A raise statement

Return — A return statement

Try — A try statement

While — A while statement

With — A with statement

— Expr — An expression

Attribute — An attribute, obj.attr
Call - A function call, f (arg)
IfExp — A conditional expression, x if cond else y
Lambda - A lambda expression
Yield — A yield expression
Bytes — A bytes literal, b"x" or (in Python 2) "x"
Unicode — A unicode literal, u"x" or (in Python 3) "x"
Num — A numeric literal, 3 or 4.2
- IntegerLiteral
- FloatLiteral
- ImaginaryLiteral
Dict — A dictionary literal, {'a': 2}
Set — A set literal, {'a', 'b'}
List — Alist literal, ['a', 'b']

Tuple - A tuple literal, ('a', 'b")

DictComp — A dictionary comprehension, {k: v for ...

SetComp — A set comprehension, {x for ...}
ListComp — A list comprehension, [x for ...]
GenExpr — A generator expression, (x for ...)

Subscript — A subscript operation, seq[index]

288

Chapter 8.

CodeQL for Python

Learning CodeQL, Release 1.24

Name — A reference to a variable, var
UnaryExpr — A unary operation, -x

BinaryExpr — A binary operation, x+y

Compare — A comparison operation, 0 < x < 10

BoolExpr — Short circuit logical operations, x and y, x or y

Variables
e Variable — A variable

— LocalVariable — A variable local to a function or a class

— GlobalVariable — A module level variable

Other

e Comment — A comment

8.2.3 Control flow classes

This part of the library represents the control flow graph of each Scope (classes, functions, and modules). Each
Scope contains a graph of ControlFlowNode elements. Each scope has a single entry point and at least one
(potentially many) exit points. To speed up control and data flow analysis, control flow nodes are grouped into
basic blocks. For more information, see Basic block on Wikipedia.

Example

If we want to find the longest sequence of code without any branches, we need to consider control flow. A
BasicBlock is, by definition, a sequence of code without any branches, so we just need to find the longest
BasicBlock.

First of all we introduce a simple predicate bb_length () which relates BasicBlocks to their length.

int bb_length(BasicBlock b) {
result = max(int i | exists(b.getNode(i))) + 1

Each ControlFlowNode within a BasicBlock is numbered consecutively, starting from zero, therefore the length
of a BasicBlock is equal to one more than the largest index within that BasicBlock.

Using this predicate we can select the longest BasicBlock by selecting the BasicBlock whose length is equal to
the maximum length of any BasicBlock:

Find the longest sequence of code without branches

import python

int bb_length(BasicBlock b) {
result = max(int i | exists(b.getNode(i)) | i) + 1

(continues on next page)

8.2. CodeQL library for Python 289

http://en.wikipedia.org/wiki/Basic_block

Learning CodeQL, Release 1.24

(continued from previous page)

from BasicBlock b
where bb_length(b) = max(bb_length(_))
select b

See this in the query console on LGTM.com. When we ran it on the LGTM.com demo projects, the openstack /nova
and ytdl-org /youtube-dl projects both contained source code results for this query.

Note

The special underscore variable _ means any value; so bb_length(_) is the length of any block.

Summary
The classes in the control-flow part of the library are:

* ControlFlowNode — A control-flow node. There is a one-to-many relation between AST nodes and control-
flow nodes.

* BasicBlock — A non branching list of control-flow nodes.

8.2.4 Type-inference classes

The CodeQL library for Python also supplies some classes for accessing the inferred types of values. The classes
Value and ClassValue allow you to query the possible classes that an expression may have at runtime.
Example

For example, which ClassValues are iterable can be determined using the query:

Find iterable ClassValues

import python

from ClassValue cls
where cls.hasAttribute("__iter__")
select cls

See this in the query console on LGTM.com This query returns a list of classes for the projects analyzed. If you
want to include the results for builtin classes, which do not have any Python source code, show the non-source
results. For more information, see builtin classes in the Python documentation.

Summary
* Value
— ClassValue
— CallableValue
— ModuleValue

For more information about these classes, see Pointer analysis and type inference in Python.

290 Chapter 8. CodeQL for Python

https://lgtm.com/query/666730036/
https://help.semmle.com/qldoc/python/semmle/python/Flow.qll/type.Flow\protect \T1\textdollar ControlFlowNode.html
https://help.semmle.com/qldoc/python/semmle/python/Flow.qll/type.Flow\protect \T1\textdollar BasicBlock.html
https://lgtm.com/query/5151030165280978402/
http://docs.python.org/library/stdtypes.html
https://help.semmle.com/qldoc/python/semmle/python/objects/ObjectAPI.qll/type.ObjectAPI\protect \T1\textdollar Value.html

Learning CodeQL, Release 1.24

8.2.5 Taint-tracking classes

The CodeQL library for Python also supplies classes to specify taint-tracking analyses. The Configuration class
can be overridden to specify a taint-tracking analysis, by specifying source, sinks, sanitizers and additional flow
steps. For those analyses that require additional types of taint to be tracked the TaintKind class can be overridden.

Summary
¢ TaintKind
* Configuration

For more information about these classes, see Analyzing data flow and tracking tainted data in Python.

8.2.6 Further reading
* CodeQL queries for Python
* Example queries for Python
* CodeQL library reference for Python
* QL language reference

¢ CodeQL tools

8.3 Functions in Python

You can use syntactic classes from the standard CodeQL library to find Python functions and identify calls to them.

These examples use the standard CodeQL class Function. For more information, see CodeQL library for Python.

8.3.1 Finding all functions called get

In this example we look for all the getters in a program. Programmers moving to Python from Java are often
tempted to write lots of getter and setter methods, rather than use properties. We might want to find those
methods.

Using the member predicate Function.getName (), we can list all of the getter functions in a database:
Tip
Instead of copying this query, try typing the code. As you start to write a name that matches a library
class, a pop-up is displayed making it easy for you to select the class that you want.

import python

from Function f
where f.getName() .matches("get’")
select £, "This is a function called get..."

See this in the query console on LGTM.com. This query typically finds a large number of results. Usually, many
of these results are for functions (rather than methods) which we are not interested in.

8.3. Functions in Python 291

https://help.semmle.com/qldoc/python/semmle/python/dataflow/TaintTracking.qll/type.TaintTracking\protect \T1\textdollar TaintKind.html
https://help.semmle.com/qldoc/python/semmle/python/dataflow/Configuration.qll/type.Configuration\protect \T1\textdollar TaintTracking\protect \T1\textdollar Configuration.html
https://github.com/github/codeql/tree/master/python/ql/src
https://github.com/github/codeql/tree/master/python/ql/examples
https://help.semmle.com/qldoc/python/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/python/semmle/python/Function.qll/type.Function\protect \T1\textdollar Function.html
https://lgtm.com/query/669220031/

Learning CodeQL, Release 1.24

8.3.2 Finding all methods called get

You can modify the query above to return more interesting results. As we are only interested in methods, we can
use the Function. isMethod() predicate to refine the query.

import python

from Function £
where f.getName() .matches("get’") and f.isMethod()
select f, "This is a method called get..."

See this in the query console on LGTM.com. This finds methods whose name starts with "get", but many of
those are not the sort of simple getters we are interested in.

8.3.3 Finding one line methods called get

We can modify the query further to include only methods whose body consists of a single statement. We do this
by counting the number of lines in each method.

import python

from Function £

where f.getName() .matches("get’") and f.isMethod()
and count(f.getAStmt()) = 1

select f, "This function is (probably) a getter."

See this in the query console on LGTM.com. This query returns fewer results, but if you examine the results you
can see that there are still refinements to be made. This is refined further in Expressions and statements in Python.

8.3.4 Finding a call to a specific function

This query uses Call and Name to find calls to the function eval - which might potentially be a security hazard.

import python

from Call call, Name name
where call.getFunc() = name and name.getId() = "eval"
select call, "call to 'eval'."

See this in the query console on LGTM.com. Some of the demo projects on LGTM.com use this function.

The Call class represents calls in Python. The Call.getFunc () predicate gets the expression being called. Name .
getId () gets the identifier (as a string) of the Name expression. Due to the dynamic nature of Python, this query
will select any call of the form eval(. . .) regardless of whether it is a call to the built-in function eval or not. In a
later tutorial we will see how to use the type-inference library to find calls to the built-in function eval regardless
of name of the variable called.

8.3.5 Further reading
* CodeQL queries for Python

¢ Example queries for Python

292 Chapter 8. CodeQL for Python

https://lgtm.com/query/690010035/
https://lgtm.com/query/667290044/
https://lgtm.com/query/6718356557331218618/
https://github.com/github/codeql/tree/master/python/ql/src
https://github.com/github/codeql/tree/master/python/ql/examples

Learning CodeQL, Release 1.24

* CodeQL library reference for Python
* QL language reference

* CodeQL tools

8.4 Expressions and statements in Python

You can use syntactic classes from the CodeQL library to explore how Python expressions and statements are used
in a code base.

8.4.1 Statements

The bulk of Python code takes the form of statements. Each different type of statement in Python is represented
by a separate CodeQL class.

Here is the full class hierarchy:
¢ Stmt — A statement

— Assert — An assert statement

— Assign
AssignStmt — An assignment statement, x = y
ClassDef — A class definition statement
FunctionDef — A function definition statement

— AugAssign — An augmented assignment, x += y

— Break — A break statement

— Continue — A continue statement

— Delete — A del statement

— ExceptStmt — The except part of a try statement

— Exec — An exec statement

— For — A for statement

— Global — A global statement

— If — An if statement

— ImportStar — A from xxx import * statement

— Import — Any other import statement

— Nonlocal — A nonlocal statement

— Pass — A pass statement

— Print — A print statement (Python 2 only)

— Raise — A raise statement

— Return — A return statement

— Try — A try statement

8.4. Expressions and statements in Python 293

https://help.semmle.com/qldoc/python/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

— While — A while statement

— With — A with statement

Example finding redundant global statements

The global statement in Python declares a variable with a global (module-level) scope, when it would otherwise
be local. Using the global statement outside a class or function is redundant as the variable is already global.

import python

from Global g
where g.getScope() instanceof Module
select g

See this in the query console on LGTM.com. None of the demo projects on LGTM.com has a global statement
that matches this pattern.

The line: g.getScope() instanceof Module ensures that the Scope of Global g is a Module, rather than a
class or function.
Example finding if statements with redundant branches

An if statement where one branch is composed of just pass statements could be simplified by negating the
condition and dropping the else clause.

if cond():
pass

else:
do_something

To find statements like this that could be simplified we can write a query.

import python

from If i, StmtList 1
where (1 = i.getBody() or 1 = i.getOrelse())

and forall(Stmt p | p = 1.getAnItem() | p instanceof Pass)
select i

See this in the query console on LGTM.com. Many projects have some if statements that match this pattern.

The line: (1 = i.getBody() or 1 = i.getOrelse()) restricts the StmtList 1 to branches of the if state-
ment.

The line: forall(Stmt p | p = l.getAnItem() | p instanceof Pass) ensures that all statementsin 1 are
pass statements.

8.4.2 Expressions
Each kind of Python expression has its own class. Here is the full class hierarchy:
* Expr — An expression

— Attribute - An attribute, obj.attr

294 Chapter 8. CodeQL for Python

https://lgtm.com/query/686330052/
https://lgtm.com/query/672230053/

Learning CodeQL, Release 1.24

— BinaryExpr — A binary operation, x+y

— BoolExpr — Short circuit logical operations, x and y,x or y
— Bytes — A bytes literal, b"x" or (in Python 2) "x"

— Call - A function call, f (arg)

— Compare — A comparison operation, 0 < x < 10

— Dict - A dictionary literal, {'a': 2}

— DictComp — A dictionary comprehension, {k: v for ...}
— Ellipsis — An ellipsis expression, . . .

— GeneratorExp — A generator expression

— IfExp - A conditional expression, x if cond else y

— ImportExpr — An artificial expression representing the module imported

— ImportMember - An artificial expression representing importing a value from a module (part of an
from xxx import * statement)

— Lambda - A lambda expression
— List — Alistliteral, ['a', 'b']
— ListComp — A list comprehension, [x for ...]
— Name — A reference to a variable, var
— Num — A numeric literal, 3 or 4.2

FloatLiteral

ImaginaryLiteral

IntegerLiteral
— Repr — A backticks expression, x (Python 2 only)
— Set — A set literal, {'a', 'b'}
- SetComp — A set comprehension, {x for ...}
- Slice — Aslice; the 0:1 in the expression seq[0:1]

- Starred - A starred expression, *x in the context of a multiple assignment: y, *x = 1,2,3 (Python
3 only)

— StrConst — A string literal. In Python 2 either bytes or unicode. In Python 3 only unicode.
— Subscript — A subscript operation, seq[index]

— UnaryExpr — A unary operation, -x

— Unicode — A unicode literal, u"x" or (in Python 3) "x"

— Yield — A yield expression

- YieldFrom — A yield from expression (Python 3.3+)

8.4. Expressions and statements in Python 295

Learning CodeQL, Release 1.24

Example finding comparisons to integer or string literals using is

Python implementations commonly cache small integers and single character strings, which means that com-
parisons such as the following often work correctly, but this is not guaranteed and we might want to check for

them.
x is 10
X is IIAU

We can check for these using a query.

import python

from Compare cmp, Expr literal
where (literal instanceof StrConst or literal instanceof Num)

and cmp.getOp(0) instanceof Is and cmp.getComparator(0) = literal
select cmp

See this in the query console on LGTM.com. Two of the demo projects on LGTM.com use this pattern: salt-
stack /salt and openstack /nova.

The clause cmp . getOp(0) instanceof Is and cmp.getComparator(0) = literal checks that the first com-
parison operator is is and that the first comparator is a literal.

Tip

We have to use cmp.getOp(0) and cmp.getComparator(0)as there is no cmp.getOp() or cmp.
getComparator (). The reason for this is that a Compare expression can have multiple operators.
For example, the expression 3 < x < 7 has two operators and two comparators. You use cmp.

getComparator (0) to get the first comparator (in this example the x) and cmp . getComparator (1)
to get the second comparator (in this example the 7).

Example finding duplicates in dictionary literals

If there are duplicate keys in a Python dictionary, then the second key will overwrite the first, which is almost
certainly a mistake. We can find these duplicates with CodeQL, but the query is more complex than previous
examples and will require us to write a predicate as a helper.

import python

predicate same_key(Expr ki1, Expr k2) {
ki.(Num).getN() = k2. (Num).getN()
or
k1. (StrConst) .getText() = k2. (StrConst).getText()
}

from Dict d, Expr ki1, Expr k2

where k1 = d.getAKey() and k2 = d.getAKey()
and k1 !'= k2 and same_key(kl, k2)

select k1, "Duplicate key in dict literal"

See this in the query console on LGTM.com. When we ran this query on LGTM.com, the source code of the
saltstack /salt project contained an example of duplicate dictionary keys. The results were also highlighted as

296 Chapter 8. CodeQL for Python

https://lgtm.com/query/688180010/
https://lgtm.com/query/663330305/

Learning CodeQL, Release 1.24

alerts by the standard Duplicate key in dict literal query. Two of the other demo projects on LGTM.com refer to
duplicate dictionary keys in library files. For more information, see Duplicate key in dict literal on LGTM.com.

The supporting predicate same_key checks that the keys have the same identifier. Separating this part of the logic
into a supporting predicate, instead of directly including it in the query, makes it easier to understand the query
as a whole. The casts defined in the predicate restrict the expression to the type specified and allow predicates to
be called on the type that is cast-to. For example:

x = k1. (Num).getN()

is equivalent to

exists(Num num | num = k1 | x = num.getN())

The short version is usually used as this is easier to read.

Example finding Java-style getters

Returning to the example from Functions in Python, the query identified all methods with a single line of code
and a name starting with get.

import python

from Function f

where f.getName() .matches("get’%") and f.isMethod()
and count(f.getAStmt()) = 1

select f, "This function is (probably) a getter."

This basic query can be improved by checking that the one line of code is a Java-style getter of the form return
self.attr.

import python

from Function f, Return ret, Attribute attr, Name self
where f.getName() .matches("get’%") and f.isMethod()

and ret = f.getStmt(0) and ret.getValue() = attr

and attr.getObject() = self and self.getId() = "self"
select f, "This function is a Java-style getter."

See this in the query console on LGTM.com. Of the demo projects on LGTM.com, only the openstack /nova project
has examples of functions that appear to be Java-style getters.

ret = f.getStmt(0) and ret.getValue() = attr

This condition checks that the first line in the method is a return statement and that the expression returned
(ret.getValue()) is an Attribute expression. Note that the equality ret.getValue() = attr means that
ret.getValue() is restricted to Attributes, since attr is an Attribute.

attr.getObject() = self and self.getId() = "self"

This condition checks that the value of the attribute (the expression to the left of the dot in value.attr) is an
access to a variable called "self".

8.4. Expressions and statements in Python 297

https://lgtm.com/rules/3980087
https://lgtm.com/query/669220054/

Learning CodeQL, Release 1.24

8.4.3 Class and function definitions

As Python is a dynamically typed language, class, and function definitions are executable statements. This means
that a class statement is both a statement and a scope containing statements. To represent this cleanly the class
definition is broken into a number of parts. At runtime, when a class definition is executed a class object is created
and then assigned to a variable of the same name in the scope enclosing the class. This class is created from a
code-object representing the source code for the body of the class. To represent this the ClassDef class (which
represents a class statement) subclasses Assign. The Class class, which represents the body of the class, can
be accessed via the ClassDef . getDefinedClass (). FunctionDef and Function are handled similarly.

Here is the relevant part of the class hierarchy:
e Stmt
— Assign
ClassDef
FunctionDef
* Scope
- Class

— Function

8.4.4 Further reading
* CodeQL queries for Python

* Example queries for Python

CodeQL library reference for Python
¢ QL language reference

* CodeQL tools

8.5 Pointer analysis and type inference in Python

At runtime, each Python expression has a value with an associated type. You can learn how an expression behaves
at runtime by using type-inference classes from the standard CodeQL library.

8.5.1 The Value class

The Value class and its subclasses FunctionValue, ClassValue, and ModuleValue represent the values an
expression may hold at runtime.

Summary
Class hierarchy for Value:
* Value
— ClassValue
— FunctionValue

— ModuleValue

298 Chapter 8. CodeQL for Python

https://github.com/github/codeql/tree/master/python/ql/src
https://github.com/github/codeql/tree/master/python/ql/examples
https://help.semmle.com/qldoc/python/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html
https://help.semmle.com/qldoc/python/semmle/python/objects/ObjectAPI.qll/type.ObjectAPI\protect \T1\textdollar Value.html

Learning CodeQL, Release 1.24

8.5.2 Points-to analysis and type inference

Points-to analysis, sometimes known as pointer analysis, allows us to determine which objects an expression may
point to at runtime. Type inference allows us to infer what the types (classes) of an expression may be at runtime.
For more information, see Pointer analysis and Type inference on Wikipedia.

The predicate ControlFlowNode.pointsTo(...) shows which object a control flow node may point to at run-
time.

ControlFlowNode.pointsTo(. . .) has three variants:

predicate pointsTo(Value object)
predicate pointsTo(Value object, ControlFlowNode origin)
predicate pointsTo(Context context, Value object, ControlFlowNode origin)

object is an object that the control flow node refers to, and origin is where the object comes from, which is
useful for displaying meaningful results.

The third form includes the context in which the control flow node refers to the object. This form can usually
be ignored.

Note

ControlFlowNode.pointsTo() cannot find all objects that a control flow node might point to as it
is impossible to be accurate and to find all possible values. We prefer precision (no incorrect values)
over recall (finding as many values as possible). We do this so that queries based on points-to analysis
have fewer false positive results and are thus more useful.

For complex data flow analyses, involving multiple stages, the ControlFlowNode version is more precise, but for
simple use cases the Expr based version is easier to use. For convenience, the Expr class also has the same three
predicates. Expr.pointsTo(...) also has three variants:

predicate pointsTo(Value object)
predicate pointsTo(Value object, AstNode origin)
predicate pointsTo(Context context, Value object, AstNode origin)

8.5.3 Using points-to analysis

In this example we use points-to analysis to build a more complex query. This query is included in the standard
query set.

We want to find except blocks in a try statement that are in the wrong order. That is, where a more general
exception type precedes a more specific one, which is a problem as the second except handler will never be
executed.

First we can write a query to find ordered pairs of except blocks for a try statement.

Ordered except blocks in same try statement

import python

from Try t, ExceptStmt exl, ExceptStmt ex2
where

exists(int i, int j |

(continues on next page)

8.5. Pointer analysis and type inference in Python 299

http://en.wikipedia.org/wiki/Pointer_analysis
http://en.wikipedia.org/wiki/Type_inference

Learning CodeQL, Release 1.24

(continued from previous page)

exl = t.getHandler(i) and ex2 = t.getHandler(j) and i < j
)

select t, exl, ex2

See this in the query console on LGTM.com. Many projects contain ordered except blocks in a try statement.

Here ex1 and ex2 are both except handlers in the try statement t. By using the indices i and j we can also
ensure that ex1 precedes ex2.

The results of this query need to be filtered to return only results where ex1 is more general than ex2. We can
use the fact that an except block is more general than another block if the class it handles is a superclass of the
other.

More general except block

exists(ClassValue clsl, ClassValue cls2 |
exl.getType () .pointsTo(clsl) and
ex2.getType () .pointsTo(cls2) |
not clsl = cls2 and
clsl = cls2.getASuperType()

The line:

exl.getType() .pointsTo(clsl)

ensures that c1s1 is a ClassValue that the except block would handle.
Combining the parts of the query we get this:

More general except block precedes more specific

import python

from Try t, ExceptStmt exl, ExceptStmt ex2
where
exists(int i, int j |
exl = t.getHandler(i) and ex2 = t.getHandler(j) and i < j
)
and
exists(ClassValue clsl, ClassValue cls2 |
exl.getType () .pointsTo(clsl) and
ex2.getType() .pointsTo(cls2) |
not clsl = cls2 and
clsl = cls2.getASuperType()
)

select t, exl, ex2

See this in the query console on LGTM.com. This query finds only one result in the demo projects on LGTM.com
(youtube-dl). The result is also highlighted by the standard Unreachable except block query. For more informa-
tion, see Unreachable except block on LGTM.com.

Note

300 Chapter 8. CodeQL for Python

https://lgtm.com/query/672320024/
https://lgtm.com/query/669950027/
https://lgtm.com/projects/g/ytdl-org/youtube-dl/rev/39e9d524e5fe289936160d4c599a77f10f6e9061/files/devscripts/buildserver.py?sort=name&dir=ASC&mode=heatmap#L413
https://lgtm.com/rules/7900089

Learning CodeQL, Release 1.24

If you want to submit a query for use in LGTM, then the format must be of the form select element
message. For example, you might replace the select statement with: select t, "Incorrect
order of except blocks; more general precedes more specific"

8.5.4 Using type inference

In this example we use type inference to determine when an object is used as a sequence in a for statement, but
that object might not be an "iterable".

First of all find what object is used in the for loop:

from For loop, Value iter
where loop.getIter().pointsTo(iter)
select loop, iter

Then we need to determine if the object iter is iterable. We can test ClassValue to see if it has the __iter__
attribute.

Find non-iterable object used as a loop iterator

import python

from For loop, Value iter, ClassValue cls

where loop.getIter().getAFlowNode() .pointsTo(iter) and
cls = iter.getClass() and
not exists(cls.lookup("__iter__"))

select loop, cls

See this in the query console on LGTM.com. Many projects use a non-iterable as a loop iterator.

Many of the results shown will have cls as NoneType. It is more informative to show where these None values
may come from. To do this we use the final field of pointsTo, as follows:

Find non-iterable object used as a loop iterator 2

import python

from For loop, Value iter, ClassValue cls, AstNode origin
where loop.getIter().pointsTo(iter, origin) and

cls = iter.getClass() and

not cls.hasAttribute("__iter__")
select loop, cls, origin

See this in the query console on LGTM.com. This reports the same results, but with a third column showing the
source of the None values.

8.5.5 Finding calls using call-graph analysis

The Value class has a method getACall () which allows us to find calls to a particular function (including builtin
functions).

If we wish to restrict the callables to actual functions we can use the FunctionValue class, which is a subclass of
Value and corresponds to function objects in Python, in much the same way as the ClassValue class corresponds
to class objects in Python.

8.5. Pointer analysis and type inference in Python 301

https://lgtm.com/query/5636475906111506420/
https://lgtm.com/query/3795352249440053606/

Learning CodeQL, Release 1.24

Returning to an example from Functions in Python, we wish to find calls to the eval function.

The original query looked this:

import python

from Call call, Name name
where call.getFunc() = name and name.getId() = "eval"
select call, "call to 'eval'."

See this in the query console on LGTM.com. Some of the demo projects on LGTM.com have calls that match this
pattern.

There are two problems with this query:

It assumes that any call to something named eval is a call to the builtin eval function, which may result in
some false positive results.

* It assumes that eval cannot be referred to by any other name, which may result in some false negative
results.

We can get much more accurate results using call-graph analysis. First, we can precisely identify the
FunctionValue for the eval function, by using the Value: :named predicate as follows:

import python

from Value eval
where eval = Value::named("eval")
select eval

Then we can use Value.getACall() to identify calls to the eval function, as follows:

import python

from ControlFlowNode call, Value eval

where eval = Value::named("eval") and
call = eval.getACall()

select call, "call to 'eval'."

See this in the query console on LGTM.com. This accurately identifies calls to the builtin eval function even
when they are referred to using an alternative name. Any false positive results with calls to other eval functions,
reported by the original query, have been eliminated.

8.5.6 Further reading
* CodeQL queries for Python

¢ Example queries for Python

CodeQL library reference for Python
* QL language reference

¢ CodeQL tools

302 Chapter 8. CodeQL for Python

https://lgtm.com/query/6718356557331218618/
https://lgtm.com/query/535131812579637425/
https://github.com/github/codeql/tree/master/python/ql/src
https://github.com/github/codeql/tree/master/python/ql/examples
https://help.semmle.com/qldoc/python/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

8.6 Analyzing control flow in Python

You can write CodeQL queries to explore the control-flow graph of a Python program, for example, to discover
unreachable code or mutually exclusive blocks of code.

8.6.1 About analyzing control flow

To analyze the control-flow graph of a Scope we can use the two CodeQL classes ControlFlowNode and
BasicBlock. These classes allow you to ask such questions as can you reach point A from point B? or Is it
possible to reach point B without going through point A?. To report results we use the class AstNode, which
represents a syntactic element and corresponds to the source code - allowing the results of the query to be more
easily understood. For more information, see Control-flow graph on Wikipedia.

8.6.2 The ControlFlowNode class

The ControlFlowNode class represents nodes in the control flow graph. There is a one-to-many relation be-
tween AST nodes and control flow nodes. Each syntactic element, the AstNode, maps to zero, one, or many
ControlFlowNode classes, but each ControlFlowNode maps to exactly one AstNode.

To show why this complex relation is required consider the following Python code:

try:
might_raise()
if cond:
break
finally:
close_resource()

There are many paths through the above code. There are three different paths through the call to
close_resource() ; one normal path, one path that breaks out of the loop, and one path where an exception is
raised by might_raise().

An annotated flow graph:

8.6. Analyzing control flow in Python 303

http://en.wikipedia.org/wiki/Control_flow_graph

Learning CodeQL, Release 1.24

:
o
N
N\
N\,
o]
Iy o
- Name (Load) id=close_resource<22523728>
\\
N
Ay
(e
304 Chapter 8. CodeQL for Python

Learning CodeQL, Release 1.24

The simplest use of the ControlFlowNode and AstNode classes is to find unreachable code. There is one
ControlFlowNode per path through any AstNode and any AstNode that is unreachable has no paths flowing
through it. Therefore, any AstNode without a corresponding ControlFlowNode is unreachable.

Example finding unreachable AST nodes

import python

from AstNode node
where not exists(node.getAFlowNode())
select node

See this in the query console on LGTM.com. The demo projects on LGTM.com all have some code that has no
control flow node, and is therefore unreachable. However, since the Module class is also a subclass of the AstNode
class, the query also finds any modules implemented in C or with no source code. Therefore, it is better to find
all unreachable statements.

Example finding unreachable statements

import python

from Stmt s
where not exists(s.getAFlowNode())
select s

See this in the query console on LGTM.com. This query gives fewer results, but most of the projects have some
unreachable nodes. These are also highlighted by the standard Unreachable code query. For more information,
see Unreachable code on LGTM.com.

8.6.3 The BasicBlock class

The BasicBlock class represents a basic block of control flow nodes. The BasicBlock class is not that useful for
writing queries directly, but is very useful for building complex analyses, such as data flow. The reason it is useful
is that it shares many of the interesting properties of control flow nodes, such as, what can reach what, and what
dominates what, but there are fewer basic blocks than control flow nodes - resulting in queries that are faster and
use less memory. For more information, see Basic block and Dominator on Wikipedia.

Example finding mutually exclusive basic blocks

Suppose we have the following Python code:

if condition():
return O
pass

Can we determine that it is impossible to reach both the return 0 statement and the pass statement in a single
execution of this code? For two basic blocks to be mutually exclusive it must be impossible to reach either of them
from the other. We can write:

8.6. Analyzing control flow in Python 305

https://lgtm.com/query/669220024/
https://lgtm.com/query/670720181/
https://lgtm.com/rules/3980095
http://en.wikipedia.org/wiki/Basic_block
http://en.wikipedia.org/wiki/Dominator_%28graph_theory%29

Learning CodeQL, Release 1.24

import python

from BasicBlock bl, BasicBlock b2
where bl != b2 and not bl.strictlyReaches(b2) and not b2.strictlyReaches(bl)
select bl, b2

However, by that definition, two basic blocks are mutually exclusive if they are in different scopes. To make the
results more useful, we require that both basic blocks can be reached from the same function entry point:

exists(Function shared, BasicBlock entry |
entry.contains(shared.getEntryNode()) and
entry.strictlyReaches(bl) and entry.strictlyReaches(b2)

Combining these conditions we get:

Example finding mutually exclusive blocks within the same function

import python

from BasicBlock bl, BasicBlock b2
where bl != b2 and not bl.strictlyReaches(b2) and not b2.strictlyReaches(bl) and
exists(Function shared, BasicBlock entry |
entry.contains(shared.getEntryNode()) and
entry.strictlyReaches(bl) and entry.strictlyReaches(b2)
)
select bl, b2

See this in the query console on LGTM.com. This typically gives a very large number of results, because it is a
common occurrence in normal control flow. It is, however, an example of the sort of control-flow analysis that is
possible. Control-flow analyses such as this are an important aid to data flow analysis. For more information, see
Analyzing data flow and tracking tainted data in Python.

8.6.4 Further reading
* CodeQL queries for Python

¢ Example queries for Python

CodeQL library reference for Python
* QL language reference

¢ CodeQL tools

8.7 Analyzing data flow and tracking tainted data in Python

You can use CodeQL to track the flow of data through a Python program. Tracking user-controlled, or tainted,
data is a key technique for security researchers.

306 Chapter 8. CodeQL for Python

https://lgtm.com/query/671000028/
https://github.com/github/codeql/tree/master/python/ql/src
https://github.com/github/codeql/tree/master/python/ql/examples
https://help.semmle.com/qldoc/python/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

8.7.1 About data flow and taint tracking

Taint tracking is used to analyze how potentially insecure, or tainted data flows throughout a program at runtime.
You can use taint tracking to find out whether user-controlled input can be used in a malicious way, whether
dangerous arguments are passed to vulnerable functions, and whether confidential or sensitive data can leak.
You can also use it to track invalid, insecure, or untrusted data in other analyses.

Taint tracking differs from basic data flow in that it considers non-value-preserving steps in addition to normal
data flow steps. For example, in the assignment dir = path + "/", if path is tainted then dir is also tainted,
even though there is no data flow from path to path + "/".

Separate CodeQL libraries have been written to handle normal data flow and taint tracking in C/C++, C#, Java,
and JavaScript. You can access the appropriate classes and predicates that reason about these different modes
of data flow by importing the appropriate library in your query. In Python analysis, we can use the same taint
tracking library to model both normal data flow and taint flow, but we are still able make the distinction between
steps that preserve values and those that dont by defining additional data flow properties.

For further information on data flow and taint tracking with CodeQL, see Introduction to data flow.

Fundamentals of taint tracking using data flow analysis

The taint tracking library is in the TaintTracking module. Any taint tracking or data flow analysis query has three
explicit components, one of which is optional, and an implicit component. The explicit components are:

1. One or more sources of potentially insecure or unsafe data, represented by the TaintTracking::Source class.
2. One or more sinks, to where the data or taint may flow, represented by the TaintTracking::Sink class.
3. Zero or more sanitizers, represented by the Sanitizer class.

A taint tracking or data flow query gives results when there is the flow of data from a source to a sink, which is
not blocked by a sanitizer.

These three components are bound together using a TaintTracking::Configuration. The purpose of the configura-
tion is to specify exactly which sources and sinks are relevant to the specific query.

The final, implicit component is the kind of taint, represented by the TaintKind class. The kind of taint determines
which non-value-preserving steps are possible, in addition to value-preserving steps that are built into the analysis.
In the above example dir = path + "/", taint flows from path to dir if the taint represents a string, but not if
the taint is None.

Limitations

Although taint tracking is a powerful technique, it is worth noting that it depends on the underlying data flow
graphs. Creating a data flow graph that is both accurate and covers a large enough part of a program is a challenge,
especially for a dynamic language like Python. The call graph might be incomplete, the reachability of code is an
approximation, and certain constructs, like eval, are just too dynamic to analyze.

8.7.2 Using taint-tracking for Python

A simple taint tracking query has the basic form:

J**
* @name . ..
* @description ...

(continues on next page)

8.7. Analyzing data flow and tracking tainted data in Python 307

https://help.semmle.com/qldoc/python/semmle/python/dataflow/TaintTracking.qll/module.TaintTracking.html
https://help.semmle.com/qldoc/python/semmle/python/dataflow/TaintTracking.qll/type.TaintTracking\protect \T1\textdollar TaintSource.html
https://help.semmle.com/qldoc/python/semmle/python/dataflow/TaintTracking.qll/type.TaintTracking\protect \T1\textdollar TaintSink.html
https://help.semmle.com/qldoc/python/semmle/python/dataflow/TaintTracking.qll/type.TaintTracking\protect \T1\textdollar Sanitizer.html
https://help.semmle.com/qldoc/python/semmle/python/dataflow/Configuration.qll/type.Configuration\protect \T1\textdollar TaintTracking\protect \T1\textdollar Configuration.html
https://help.semmle.com/qldoc/python/semmle/python/dataflow/TaintTracking.qll/type.TaintTracking\protect \T1\textdollar TaintKind.html

Learning CodeQL, Release 1.24

(continued from previous page)

* @kind problem
*/

import semmle.python.security.TaintTracking

class MyConfiguration extends TaintTracking::Configuration {
MyConfiguration() { this = "My example configuration" }
override predicate isSource(TaintTracking::Source src) { ... }
override predicate isSink(TaintTracking::Sink sink) { ... }

/* optionally */
override predicate isExtension(Extension extension) { ... }

from MyConfiguration config, TaintTracking::Source src, TaintTracking::Sink sink
where config.hasFlow(src, sink)

select sink, "Alert message, including reference to $@.", src, "string describing the source"

Example

As a contrived example, here is a query that looks for flow from a HTTP request to a function called "unsafe".
The sources are predefined and accessed by importing library semmle.python.web.HttpRequest. The sink is
defined by using a custom TaintTracking: : Sink class.

/* Import the string taint kind needed by our custom sink */
import semmle.python.security.strings.Untrusted

/* Sources */

import semmle.python.web.HttpRequest

/* Sink */
/**% A class representing any argument in a call to a function called "unsafe" */
class UnsafeSink extends TaintTracking::Sink {

UnsafeSink() {
exists(FunctionValue unsafe |
unsafe.getName() = "unsafe" and
unsafe.getACall() . (CallNode) .getAnArg() = this

override predicate sinks(TaintKind kind) {
kind instanceof StringKind

(continues on next page)

308 Chapter 8. CodeQL for Python

Learning CodeQL, Release 1.24

(continued from previous page)

class HttpToUnsafeConfiguration extends TaintTracking::Configuration {
HttpToUnsafeConfiguration() {
this = "Example config finding flow from http request to 'unsafe' function"
override predicate isSource(TaintTracking::Source src) { src instanceof HttpRequestTaintSource

-}

override predicate isSink(TaintTracking::Sink sink) { sink instanceof UnsafeSink }

from HttpToUnsafeConfiguration config, TaintTracking::Source src, TaintTracking::Sink sink
where config.hasFlow(src, sink)
select sink, "This argument to 'unsafe' depends on $@.", src, "a user-provided value"

Converting a taint-tracking query to a path query

Although the taint tracking query above tells which sources flow to which sinks, it doesnt tell us how. For that we
need a path query.

A standard taint tracking query can be converted to a path query by changing @kind problem to @kind
path-problem, adding an import and changing the format of the query clauses. The import is simply:

import semmle.python.security.Paths

And the format of the query becomes:

from Configuration config, TaintedPathSource src, TaintedPathSink sink
where config.hasFlowPath(src, sink)
select sink.getSink(), src, sink, "Alert message, including reference to $@.", src.getSource(),

~"string describing the source"

Thus, our example query becomes:

J*k

* QOkind path-problem

*/

/* This computes the paths */
import semmle.python.security.Paths

/* Ezpose the string taint kinds needed by our custom sink */
import semmle.python.security.strings.Untrusted

/* Sources */

(continues on next page)

8.7. Analyzing data flow and tracking tainted data in Python 309

Learning CodeQL, Release 1.24

(continued from previous page)

import semmle.python.web.HttpRequest

/* Sink */
/*%* A class representing any argument in a call to a function called "unsafe" */
class UnsafeSink extends TaintTracking::Sink {

UnsafeSink() {
exists(FunctionValue unsafe |
unsafe.getName() = "unsafe" and
unsafe.getACall() . (CallNode) .getAnArg() = this

override predicate sinks(TaintKind kind) {
kind instanceof StringKind

class HttpToUnsafeConfiguration extends TaintTracking::Configuration {

HttpToUnsafeConfiguration() {
this = "Example config finding flow from http request to 'unsafe' function"

override predicate isSource(TaintTracking::Source src) { src instanceof HttpRequestTaintSource,

-}

override predicate isSink(TaintTracking::Sink sink) { sink instanceof UnsafeSink }

from HttpToUnsafeConfiguration config, TaintedPathSource src, TaintedPathSink sink
where config.hasFlowPath(src, sink)
select sink.getSink(), src, sink, "This argument to 'unsafe' depends on $0.", src.getSource(), "a

—user-provided value"

8.7.3 Tracking custom taint kinds and flows

In the above examples, we have assumed the existence of a suitable TaintKind, but sometimes it is necessary to
model the flow of other objects, such as database connections, or None.

The TaintTracking: : Source and TaintTracking: : Sink classes have predicates that determine which kind of
taint the source and sink model, respectively.

abstract class Source {
abstract predicate isSourceOf(TaintKind kind);

abstract class Sink {

(continues on next page)

310 Chapter 8. CodeQL for Python

Learning CodeQL, Release 1.24

(continued from previous page)

abstract predicate sinks(TaintKind taint);

The TaintKind itself is just a string (a QL string, not a CodeQL entity representing a Python string), which provides
methods to extend flow and allow the kind of taint to change along the path. The TaintKind class has many
predicates allowing flow to be modified. This simplest TaintKind does not override any predicates, meaning
that it only flows as opaque data. An example of this is the Hard-coded credentials query, which defines the
simplest possible taint kind class, HardcodedValue, and custom source and sink classes. For more information,
see Hard-coded credentials on LGTM.com.

class HardcodedValue extends TaintKind {
HardcodedValue() {
this = "hard coded value"

class HardcodedValueSource extends TaintTracking::Source {

override predicate isSourceOf(TaintKind kind) {
kind instanceof HardcodedValue

class CredentialSink extends TaintTracking::Sink {

override predicate sinks(TaintKind kind) {
kind instanceof HardcodedValue

8.7.4 Further reading
¢ Exploring data flow with path queries
* CodeQL queries for Python
* Example queries for Python
* CodeQL library reference for Python
* QL language reference
¢ CodeQL tools
* Basic query for Python code: Learn to write and run a simple CodeQL query using LGTM.

* CodeQL library for Python: When you need to analyze a Python program, you can make use of the large
collection of classes in the CodeQL library for Python.

* Functions in Python: You can use syntactic classes from the standard CodeQL library to find Python functions
and identify calls to them.

8.7. Analyzing data flow and tracking tainted data in Python 311

https://lgtm.com/query/rule:1506421276400/lang:python/
https://help.semmle.com/codeql/codeql-for-vscode/procedures/exploring-paths.html
https://github.com/github/codeql/tree/master/python/ql/src
https://github.com/github/codeql/tree/master/python/ql/examples
https://help.semmle.com/qldoc/python/
https://help.semmle.com/QL/ql-handbook
https://help.semmle.com/codeql/codeql-tools.html

Learning CodeQL, Release 1.24

Expressions and statements in Python: You can use syntactic classes from the CodeQL library to explore how
Python expressions and statements are used in a codebase.

Analyzing control flow in Python: You can write CodeQL queries to explore the control-flow graph of a
Python program, for example, to discover unreachable code or mutually exclusive blocks of code.

Pointer analysis and type inference in Python: At runtime, each Python expression has a value with an asso-
ciated type. You can learn how an expression behaves at runtime by using type-inference classes from the
standard CodeQL library.

Analyzing data flow and tracking tainted data in Python: You can use CodeQL to track the flow of data
through a Python program. Tracking user-controlled, or tainted, data is a key technique for security re-
searchers.

312

Chapter 8. CodeQL for Python

CHAPTER

NINE

CODEQL TRAINING AND VARIANT ANALYSIS EXAMPLES

9.1 CodeQL and variant analysis

Variant analysis is the process of using a known vulnerability as a seed to find similar problems in your code.
Security engineers typically perform variant analysis to identify possible vulnerabilities and to ensure that these
threats are properly fixed across multiple code bases.

CodeQL is the code analysis engine that underpins LGTM, the community driven security analysis platform. To-
gether, CodeQL and LGTM provide continuous monitoring and scalable variant analysis for your projects, even if
you dont have your own team of dedicated security engineers. You can read more about using CodeQL and LGTM
in variant analysis on the Security Lab research page.

CodeQL is easy to learn, and exploring code using CodeQL is the most efficient way to perform variant analysis.

9.2 Learning CodeQL for variant analysis

Start learning how to use CodeQL in variant analysis for a specific language by looking at the topics below. Each
topic links to a short presentation on CodeQL, its libraries, or an example variant discovered using CodeQL.

When you have selected a presentation, use — and to navigate between slides. Press p to view the additional
notes on slides that have an information icon in the top right corner, and press f to enter full-screen mode.

The presentations contain a number of query examples. We recommend that you download CodeQL for Visual
Studio Code and add the example database for each presentation so that you can find the bugs mentioned in the
slides.

Information

The presentations listed below are used in CodeQL and variant analysis training sessions run by
GitHub engineers. Therefore, be aware that the slides are designed to be presented by an instructor.
If you are using the slides without an instructor, please use the additional notes to help guide you
through the examples.

9.2.1 CodeQL and variant analysis for C/C++

* Introduction to variant analysis: CodeQL for C/C++-an introduction to variant analysis and CodeQL for
C/C++ programmers.

e Example: Bad overflow guard-an example of iterative query development to find bad overflow guards in a
C++ project.

313

https://securitylab.github.com/research
https://help.semmle.com/codeql/codeql-for-vscode/procedures/setting-up.html
https://help.semmle.com/codeql/codeql-for-vscode/procedures/setting-up.html
../ql-training/cpp/intro-ql-cpp.html
../ql-training/cpp/bad-overflow-guard.html

Learning CodeQL, Release 1.24

Program representation: CodeQL for C/C++-information on how CodeQL analysis represents C/C++ pro-
grams.

Introduction to local data flow-an introduction to analyzing local data flow in C/C++ using CodeQL, in-
cluding an example demonstrating how to develop a query to find a real CVE.

Exercise: snprintf overflow—an example demonstrating how to develop a data flow query.
Introduction to global data flow-an introduction to analyzing global data flow in C/C++ using CodeQL.

Analyzing control flow: CodeQL for C/C++-an introduction to analyzing control flow in C/C++ using
CodeQL.

9.2.2 CodeQL and variant analysis for Java

Introduction to variant analysis: CodeQL for Java—an introduction to variant analysis and CodeQL for Java
programmers.

Example: Query injection—an example of iterative query development to find unsanitized SPARQL injections
in a Java project.

Program representation: CodeQL for Java—information on how CodeQL analysis represents Java programs.

Introduction to local data flow—an introduction to analyzing local data flow in Java using CodeQL, including
an example demonstrating how to develop a query to find a real CVE.

Exercise: Apache Struts—an example demonstrating how to develop a data flow query.

Introduction to global data flow—an introduction to analyzing global data flow in Java using CodeQL.

9.2.3 Further reading

GitHub Security Lab

314

Chapter 9. CodeQL training and variant analysis examples

../ql-training/cpp/program-representation-cpp.html
../ql-training/cpp/data-flow-cpp.html
../ql-training/cpp/snprintf.html
../ql-training/cpp/global-data-flow-cpp.html
../ql-training/cpp/control-flow-cpp.html
../ql-training/java/intro-ql-java.html
../ql-training/java/query-injection-java.html
../ql-training/java/program-representation-java.html
../ql-training/java/data-flow-java.html
../ql-training/java/apache-struts-java.html
../ql-training/java/global-data-flow-java.html
https://securitylab.github.com/research

CHAPTER

TEN

RECENT TERMINOLOGY CHANGES

We recently started using new terminology to make it clearer to users what our products do. This note gives some
information about what has changed.

10.1 CodeQL

CodeQL is the code analysis platform formerly known as QL. CodeQL treats code as data, and CodeQL analysis
is based on running queries against your code to check for errors and find bugs and vulnerabilities. The CodeQL
product includes the tools, scripts, queries, and libraries used in CodeQL analysis.

10.2 QL

Previously we used the term QL to refer to the whole code analysis platform, which has been renamed CodeQL.
The name QL now only refers to the query language that powers CodeQL analysis.

The CodeQL queries and libraries used to analyze source code are written in QL. These queries and libraries are
open source, and can be found in the CodeQL repository. QL is a general-purpose, object-oriented language that
can be used to query any kind of data.

10.3 CodeQL databases

QL snapshots have been renamed CodeQL databases. CodeQlL databases contain relational data created and
analyzed using CodeQL. They are the equivalent of QL snapshots, but have been optimized for use with the
CodeQL tools.

315

https://github.com/github/codeql
https://help.semmle.com/codeql/about-codeql.html#about-codeql-databases

Learning CodeQL, Release 1.24

316 Chapter 10. Recent terminology changes

CHAPTER

ELEVEN

FURTHER READING

* QL language reference: A description of important concepts in QL and a formal specification of the QL
language.

317

https://help.semmle.com/QL/ql-handbook/index.html

	QL tutorials
	Introduction to QL
	Basic syntax
	Running a query
	Simple exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Example query with multiple results
	Example CodeQL queries
	Further reading

	Find the thief
	Introduction
	QL libraries
	Start the search
	Logical connectives
	The real investigation
	Hints

	More advanced queries
	Capture the culprit
	Further reading

	Catch the fire starter
	Select the southerners
	Travel restrictions
	Identify the bald bandits
	Further reading

	Crown the rightful heir
	King Basil’s heir
	Select the true heir
	Experimental explorations
	Further reading

	Cross the river
	Introduction
	Walkthrough
	Model the elements of the puzzle
	Model the action of “ferrying”
	Find paths from one state to another
	Display the results

	Alternative solutions
	Further reading

	CodeQL queries
	About CodeQL queries
	Overview
	Basic query structure
	Query metadata
	Import statements
	From clause
	Where clause
	Select clause

	Viewing the standard CodeQL queries
	Contributing queries
	Query help files

	Metadata for CodeQL queries
	About query metadata
	Metadata properties
	Additional properties for filter queries
	Example

	Query help files
	Overview
	Structure
	Section-level elements
	Block elements
	List elements
	Table elements
	Inline content
	Query help inclusion
	Section-level include elements
	Block-level include elements

	Defining the results of a query
	About query results
	Overview
	Developing a select statement
	Basic select statement
	Including the name of the similar file
	Adding a link to the similar file
	Adding details of the extent of similarity

	Further reading

	Providing locations in CodeQL queries
	About locations
	Providing URLs
	Providing location information
	Using extracted location information

	The toString() predicate
	Further reading

	About data flow analysis
	Overview
	Data flow graph
	Normal data flow vs taint tracking
	Further reading

	Creating path queries
	Overview
	Path query examples

	Constructing a path query
	Path query metadata
	Generating path explanations
	Declaring sources and sinks
	Defining flow conditions
	Select clause
	Further reading

	Troubleshooting query performance
	About query performance
	Performance tips
	Eliminate cartesian products
	Use specific types
	Determine the most specific types of a variable
	Avoid complex recursion
	Fold predicates

	Further reading

	CodeQL for C and C++
	Basic query for C and C++ code
	About the query
	Running the query
	About the query structure

	Extend the query
	Remove false positive results

	Further reading

	CodeQL library for C and C++
	About the CodeQL library for C and C++
	Commonly-used library classes
	Declaration classes
	Statement classes
	Expression classes
	Type classes
	Preprocessor classes

	Further reading

	Functions in C and C++
	Overview
	Finding all static functions
	Finding functions that are not called
	Excluding functions that are referenced with a function pointer
	Finding a specific function
	Further reading

	Expressions, types, and statements in C and C++
	Expressions and types in CodeQL
	Finding assignments to zero
	Finding assignments of 0 to an integer

	Statements in CodeQL
	Finding assignments of 0 in ‘for’ loop initialization
	Finding assignments of 0 within the loop body

	Further reading

	Conversions and classes in C and C++
	Conversions
	Exploring the subexpressions of an assignment

	Classes
	Finding derived classes
	Finding derived classes with destructors
	Finding base classes where the destructor is not virtual

	Further reading

	Analyzing data flow in C and C++
	About data flow
	Local data flow
	Using local data flow
	Using local taint tracking
	Examples
	Exercises

	Global data flow
	Using global data flow
	Using global taint tracking
	Examples
	Exercises

	Answers
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Further reading

	Refining a query to account for edge cases
	Overview
	Finding every private field and checking for initialization
	Basic query
	Refinement 1—excluding fields initialized by lists
	Refinement 2—excluding fields initialized by external libraries
	Refinement 3—excluding fields initialized indirectly
	Refinement 4—simplifying the query
	Further reading

	Detecting a potential buffer overflow
	Problem—detecting memory allocation that omits space for a null termination character
	Basic query
	Defining the entities of interest
	Finding the strlen(string) pattern
	Defining the basic query

	Improving the query using the ‘SSA’ library
	Including examples where the string size is stored before use
	Extending the query to include allocations passed via a variable

	Further reading

	Using the guards library in C and C++
	About the guards library
	The controls predicate
	The ensuresEq and ensuresLt predicates
	The ensuresEq predicate
	The ensuresLt predicate

	The comparesEq and comparesLt predicates
	The comparesEq predicate
	The comparesLt predicate

	Further reading

	Using range analysis for C and C++
	About the range analysis library
	Bounds predicates
	Overflow predicates
	Example
	Further reading

	Hash consing and value numbering
	About the hash consing and value numbering libraries
	Example C code
	Value numbering
	The value numbering API
	Why not a predicate?
	Example query

	Hash consing
	The hash consing API
	Example query

	Further reading

	CodeQL for C#
	Basic query for C# code
	About the query
	Running the query
	About the query structure

	Extend the query
	Remove false positive results

	Further reading

	CodeQL library for C#
	About the CodeQL libraries for C#
	Class hierarchies
	Exercises

	Files
	Class hierarchy
	Predicates
	Examples
	Exercises

	Elements
	Predicates
	Examples

	Locations
	Class hierarchy
	Predicates
	Examples

	Declarations
	Class hierarchy
	Predicates
	Examples

	Variables
	Class hierarchy
	Predicates
	Examples

	Types
	Class hierarchy
	Predicates
	Examples
	Exercises

	Callables
	Class hierarchy
	Predicates
	Examples

	Statements
	Class hierarchy
	Examples
	Exercises

	Expressions
	Class hierarchy
	Predicates
	Examples
	Exercises

	Attributes
	Class hierarchy
	Predicates
	Examples
	Exercises

	Answers
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 11
	Exercise 12

	Further reading

	Analyzing data flow in C#
	About this article
	Local data flow
	Using local data flow
	Using local taint tracking
	Examples
	Exercises

	Global data flow
	Using global data flow
	Using global taint tracking
	Flow sources
	Example
	Class hierarchy
	Examples
	Exercises

	Extending library data flow
	Class hierarchy
	Example
	Exercises

	Answers
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Further reading

	CodeQL for Go
	Basic query for Go code
	About the query
	Running the query
	About the query structure

	Extend the query
	Remove false positive results

	Further reading

	CodeQL library for Go
	Overview
	Abstract syntax
	Statements
	Expressions
	Names
	Functions

	Entities and name binding
	Type information
	Control flow
	Data flow
	Call graph
	Global data flow and taint tracking
	Advanced libraries
	Basic blocks and dominance
	Condition guard nodes
	Static single-assignment form
	Global value numbering

	Further reading

	Abstract syntax tree classes for working with Go programs
	Statement classes
	Expression classes
	Literals
	Unary expressions
	Binary expressions
	Type expressions
	Name expressions
	Miscellaneous

	Further reading

	Modeling data flow in Go libraries
	Sources
	Flow propagation
	Sanitizers
	Sinks

	CodeQL for Java
	Basic query for Java code
	About the query
	Running the query
	About the query structure

	Extend the query
	Remove false positive results

	Further reading

	CodeQL library for Java
	About the CodeQL library for Java
	Summary of the library classes
	Program elements
	Types
	Generics
	Variables

	Abstract syntax tree
	Metadata
	Metrics
	Call graph
	Further reading

	Analyzing data flow in Java
	About this article
	Local data flow
	Using local data flow
	Using local taint tracking
	Examples
	Exercises

	Global data flow
	Using global data flow
	Using global taint tracking
	Flow sources
	Examples
	Exercises

	Answers
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Further reading

	Java types
	About working with Java types
	Example: Finding problematic array casts
	Improvements

	Example: Finding mismatched contains checks
	Improvements

	Further reading

	Overflow-prone comparisons in Java
	About this article
	Initial query
	Generalizing the query
	Further reading

	Navigating the call graph
	Call graph classes
	Example: Finding unused methods
	Further reading

	Annotations in Java
	About working with annotations
	Example: Finding missing @Override annotations
	Example: Finding calls to deprecated methods
	Improvements

	Further reading

	Javadoc
	About analyzing Javadoc
	Example: Finding spurious @param tags
	Example: Finding spurious @throws tags
	Improvements

	Further reading

	Working with source locations
	About source locations
	Location API
	Determining white space around an operator
	Find suspicious nesting
	Improving the query

	Further reading

	Abstract syntax tree classes for working with Java programs
	Statement classes
	Expression classes
	Literals
	Unary expressions
	Binary expressions
	Assignment expressions
	Accesses
	Miscellaneous

	Further reading

	CodeQL for JavaScript
	Basic query for JavaScript code
	About the query
	Running the query
	About the query structure

	Extend the query
	Remove false positive results

	Further reading

	CodeQL library for JavaScript
	Overview
	Introducing the library
	Textual level
	Lexical level
	Syntactic level
	Name binding
	Control flow
	Data flow
	Type inference
	Call graph
	Inter-procedural data flow
	Syntax errors
	Frameworks
	Miscellaneous

	Further reading

	CodeQL library for TypeScript
	Overview
	Syntax
	Type annotations
	Function signatures
	Type parameters
	Classes and interfaces
	Statements
	Expressions
	Ambient declarations

	Static type information
	Basic usage
	Working with types
	Canonical names and named types
	Function types
	Call resolution
	Inheritance and subtyping

	Name binding
	Type names
	Namespace names

	Further reading

	Analyzing data flow in JavaScript and TypeScript
	Overview
	Data flow nodes
	Local data flow
	Source nodes
	Exercises

	Global data flow
	Using global data flow
	Using global taint tracking
	Examples
	Sanitizers
	Sanitizer guards
	Additional taint steps
	Exercises

	Answers
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Further reading

	Using flow labels for precise data flow analysis
	Overview
	Limitations of basic data-flow analysis
	Using flow labels
	Example
	API
	Standard queries using flow labels
	Further reading

	Using type tracking for API modeling
	Overview
	The problem of recognizing method calls
	Type tracking in general
	Tracking the database instance
	Tracking in the whole model
	Tracking associated data
	Back-tracking callbacks
	Summary
	Limitations
	When to use type tracking
	Type tracking in the standard libraries
	Further reading

	Abstract syntax tree classes for working with JavaScript and TypeScript programs
	Statement classes
	Expression classes
	Literals
	Identifiers
	Primary expressions
	Properties
	Property accesses
	Function calls and new
	Unary expressions
	Binary expressions
	Assignment expressions
	Update expressions
	Miscellaneous

	Further reading

	Data flow cheat sheet for JavaScript
	Taint tracking path queries
	DataFlow module
	StringOps module
	Utility
	System and Network
	Files
	AST nodes
	String matching
	Type tracking
	Troubleshooting
	Further reading

	CodeQL for Python
	Basic query for Python code
	About the query
	Running the query
	About the query structure

	Extend the query
	Remove false positive results

	Further reading

	CodeQL library for Python
	About the CodeQL library for Python
	Syntactic classes
	Scope
	Statement
	Expression
	Variable
	Other source code elements
	Examples
	Summary

	Control flow classes
	Example
	Summary

	Type-inference classes
	Example
	Summary

	Taint-tracking classes
	Summary

	Further reading

	Functions in Python
	Finding all functions called “get…”
	Finding all methods called “get…”
	Finding one line methods called “get…”
	Finding a call to a specific function
	Further reading

	Expressions and statements in Python
	Statements
	Example finding redundant ‘global’ statements
	Example finding ‘if’ statements with redundant branches

	Expressions
	Example finding comparisons to integer or string literals using ‘is’
	Example finding duplicates in dictionary literals
	Example finding Java-style getters

	Class and function definitions
	Further reading

	Pointer analysis and type inference in Python
	The Value class
	Summary

	Points-to analysis and type inference
	Using points-to analysis
	Using type inference
	Finding calls using call-graph analysis
	Further reading

	Analyzing control flow in Python
	About analyzing control flow
	The ControlFlowNode class
	Example finding unreachable AST nodes
	Example finding unreachable statements

	The BasicBlock class
	Example finding mutually exclusive basic blocks
	Example finding mutually exclusive blocks within the same function

	Further reading

	Analyzing data flow and tracking tainted data in Python
	About data flow and taint tracking
	Fundamentals of taint tracking using data flow analysis
	Limitations

	Using taint-tracking for Python
	Example
	Converting a taint-tracking query to a path query

	Tracking custom taint kinds and flows
	Further reading

	CodeQL training and variant analysis examples
	CodeQL and variant analysis
	Learning CodeQL for variant analysis
	CodeQL and variant analysis for C/C++
	CodeQL and variant analysis for Java
	Further reading

	Recent terminology changes
	CodeQL
	QL
	CodeQL databases

	Further reading

